# MATLAB EXPO 2016

The Rise of Engineering-Driven Analytics

Phil Rottier
MathWorks UK Consulting









# The Rise of Engineering-Driven Analytics





# **Analysis**



Apply robust, statistically-motivated methods to <u>data</u> produced from complex systems to <u>understand</u> what has happened and why,

predict what will happen



# **Analytics**

Measure

Descriptive & Diagnostic

**Predictive** 

**Prescriptive** 

Apply robust, statistically-motivated methods to <u>data</u> produced from complex systems to <u>understand</u> what has happened and why,

predict what will happen

suggest decisions or actions.

Decision Support

Decision **Automation** 









# Analytics are pervasive – Why Now?

#### We have data

- Engineering
- Business
- Transactional

#### We have compute

- Desktop
   Multicore, GPU
- Clusters
- Cloud computing
- Hadoop with Spark

#### We know how

- Neural Networks
- Classification
- Clustering
- Regression
- ...and much more...



# **Analytics in e-commerce**





**Images** 

**Use Image Processing** 

to add image data to the model,

improving performance

**Engineering Data** 

Social profile

Geolocation

. . .

Keystroke logs

**Transactions** 



**Business Data** 



MATLAB EXPO 2016

6



# Consider the *Data* in Data Analytics





## Consider the *Data* in Data Analytics





# The Rise of Engineering-Driven Analytics



## Architecture of an analytics system





## Architecture of an analytics system



Predictive Model deployed in smart and embedded systems

deployed on cloud and business systems



**Adaptive building energy management** 







**Adaptive building energy management** 







**Adaptive building energy management** 







# Real-time, closed-loop optimization algorithms



and real-time data feeds



**Adaptive building energy management** 







# Why MATLAB?

- Robust numerical algorithms
- Extensive visualization and analytics tools
- Industry-robust and reliable mathematical optimization routines
- Good object-oriented framework
- Ability to interface with Java (for backend work)
- Running MATLAB in the cloud in production
- Unit-testing framework





We could rapidly translate our prototypes into production algorithms that deal reliably with real-world noise and uncertainty

Borislav Savkovic, BuildingIQ

# 50 km/h - sudden brake



# Example – Scania

#### **Automatic emergency braking using sensor fusion and analytics**





# Example – Scania

#### **Automatic emergency braking using sensor fusion and analytics**





# **Using Model-Based Design**

to build and deploy the analytics in an embedded control system



MATLAB Integrates Analytics <u>and</u> Model-Based Design







## Implementing Sensor Fusion at Scania





#### Machine learning

to develop fusion algorithms for situation detection







Predictive Model deployed on vehicle



MATLAB EXPO 2016

22





# **Predictive Maintenance for polymer-based production machines**

#### Sensor Data (~1 minute)

10s-100s sensors/machine Quality State (~40 minutes)













# Classification using Statistics, Machine Learning, and Neural Networks











# Deployment – a MATLAB App used by machine operators



OK





# Deployment – a MATLAB App used by machine operators



**NOT OK** 

Prozesskennzahl v3.0 @ Mondi Gronau GmbH 2016



## **Architecture of an analytics system**



MATLAB EXPO 2016 26



# The need for data scientists







**Essential Guide** 

IoT analytics guide: Understanding Internet of Things data A comprehensive collection of articles, videos and more, hand-picked by our editors

Shortage of data scientists, big data pros vexes IoT efforts

CRUNCH NETWORK

## **How To Stem The Global Shortage Of Data Scientists**

Posted Dec 31, 2015 by Amy Gershkoff (@amygershkoff)

# Big data talent shortage: How to bridge the gap?

By Abhishek Raval on May 29, 2015

## What they say

- Expand university programs
- Train existing analysts

















## ThingSpeak IoT open data platform for students and makers





## ThingSpeak IoT open data platform for students and makers





# MATLAB lets you be your own data scientist





"As a manufacturing company we don't have data scientists with machine learning expertise, but MathWorks provided the tools and technical knowhow that enabled us to develop a production preventative maintenance system in a matter of months,"

Dr. Michael Kohlert, head of information management and process automation at Mondi.



Limited users, scope, & technology



Compute Power Machine
Learning
graphs clustering

Pervasive users, scope, & technology

- Engineering
- Business
- Transactional
- Native support for engineering data
- Database interfaces
- Streaming

- Desktop -Multicore, GPU
- Clusters
- Cloud computing
- Hadoop with Spark

- Neural Networks
- Classification
- Clustering
- Regression
- · ...and much more...

In MATLAB

#### **NEW** for MATLAB

**Audio System Toolbox** R2016a **Vision HDL Toolbox** R2015a



Limited users, scope, & technology



Compute **Power** 

Machine **Pervasive** users, scope, Learning & technology graphs clustering

- Engineering
- **Business**
- **Transactional**

- Desktop -Multicore, GPU
- Clusters
- **Cloud computing**

- **Hadoop with Spark**

- In MATLAB
- **Native support for** engineering data
- **Database interfaces**
- Streaming
- **Datastore** text, image, video, **Excel files**
- Timetable, string, and tall arrays 2016b

- **Neural Networks**
- Classification
- Clustering
- Regression



Limited users, scope, & technology

# **Big Data**

Compute **Power** 

**Pervasive** users, scope, & technology

- **Engineering**
- **Business**
- **Transactional**

- Desktop -
- Clusters
- **Cloud computing**
- Multicore, GPU
- **Hadoop with Spark**

- In MATLAB
- engineering data
- **Database interfaces**

Native support for

- **Streaming**
- **Datastore** text, image, video, Excel files
- Timetable, string, and . tall arrays 2016b

- Multicore & GPU
- **MATLAB Distributed Computing Server** and EC2 Support
- **Hadoop with Spark** support R2016b
- **MATLAB Production** Server

**Neural Networks** 

**Machine** 

Learning

graphs clustering

- Classification
- Clustering
- Regression



Limited users, scope, & technology

# Big Data



Machine Learning

Pervasive users, scope, & technology

- Engineering
- Business
- Transactional

- Desktop -Multicore, GPU
- Clusters
- Cloud computing
- Hadoop with Spark

- Neural Networks
- Classification
- Clustering
- Regression

In MATLAB

- Native support for engineering data
- Database interfaces
- Streaming
- Datastore text, image, video, Excel files
- Timetable, string, and .
   tall arrays 2016b

- Multicore & GPU
- MATLAB Distributed Computing Server and EC2 Support
- Hadoop with Spark support R2016b
- MATLAB Production Server

- Statistics and Machine Learning Toolbox
- Classification Learner App R2015a
- Neural Network Toolbox
- CNNs for Deep learning R2016a
- Machine learning with code generation



## **MATLAB** Apps for Data Analytics

Classification Learner - Scatter Plot CLASSIFICATION LEARNER

Classification Learner

**Distribution Fitting** 

**System Identification** 

**Signal Analysis** 

**Wavelet Design and Analysis** 

**Neural Net Fitting** 

**Neural Net Pattern Recognition** 

**Training Image Labeler** 

Fine KNN Medium KNN Coarse KNN Advanced Train Feature Scatter Confusion ROC Curve Export Model ▼ Data Browse Scatter Plot X History Predictions: model 1.4 Accuracy: 97.0% 1.2 Tree Model predictions 0.9 0.8 × Incorrect Accuracy: 99.0% 5/5 features 0.7 Accuracy: 98.0% ياً 0.5 Neural Network Training (nntraintool) ₹ 0.4 Neural Network 0.3 Status: Trained Hidden Output Accuracy: 99.0% 0.2 Prediction speed: ~5300 obs/sec Output Training Time: 0.28722 secs 0.1 Classifier Number of neighbors: 1 Original Dataset: X Observations: 100 Predictors: 5 Response Variable: colu Algorithms Data Division: Random (dividerand) Scaled Conjugate Gradient (trainscg) Performance: Cross-Entropy (crossentropy) Derivative: Default (defaultderiv) Progress 23 iterations 1000 Epoch: 0:00:00 Time: and many more... Performance: 1.29 0.0677 0.00 1.11 0.0126 Gradient: 1.00e-066 Validation Checks:



Model

- - X

) Run

# Using MATLAB R2016a

Height

Valve Position Flow Rate Controller 8.0 **App Designer** Pulse Generator Frequency 500 Auto Update Proportional Integral Derivative Signal Length (s) 2 A Patient Data Plant gaussian 50 **Blood Pressur** 60 40 Low Medium Gender 100 1.6 2.4 0.4 0.6 20 - 80 ✓ Male 95 ✓ Female 3.2 0.8 Current Setpoint Set Point Measurement Noise 90 Window Modulation 0.3 Blood Pressure 00 Diastolic 0.2 Diastolic 0.1 Systolic -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 75 High Pass Time (s) Dispersion Size 70 Weight

150 160 170 180 190 200 210

Weight

120 130 140

■ PID Controller

Response



## Deep Learning with Neural Network Toolbox - New in R2016a





# The Rise of Engineering-Driven Analytics



Be your own Data Scientist!





## More details in ...

|       | Application Track 1                                                              | Application Track 2                                                        | Introductory Sessions                  | Master Classes                                      |
|-------|----------------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------|-----------------------------------------------------|
| 11:15 | Big Data                                                                         | What's New in Simulink<br>Release R2016a and R2016b                        | Introduction to MATLAB                 | Signal Processing                                   |
| 11:45 | MATLAB and Advanced Analytics at Shell                                           | Fast-Paced Development in F1<br>Control and Analysis Systems               |                                        |                                                     |
| 12:15 | Machine Learning and Deep<br>Learning                                            | New Capabilities in Testing                                                | Introduction to Parallel Computing     | Hardware-in-the-Loop: Real-Time Simulation          |
| 12:45 | Lunch                                                                            |                                                                            |                                        |                                                     |
| 13:15 | Lunchtime Talk - Science Capital                                                 |                                                                            |                                        |                                                     |
| 14:00 | The Adoption of MATLAB Apps and Toolboxes at Jaguar Land Rover                   | Physical Modelling Integration and Cosimulation in a Real-Time Environment | Introduction to Simulink and Stateflow | Simulink for Teams: High-<br>Productivity Workflows |
| 14:30 | Developing and Sharing MATLAB Apps and Toolboxes                                 | Connecting to Hardware and Rapid Prototyping                               |                                        |                                                     |
| 15:15 | Break                                                                            |                                                                            |                                        |                                                     |
| 15:45 | MATLAB Algorithm Development and Verification for Eurofighter Typhoon Praetorian | Applying MathWorks Tools to<br>Automotive Embedded Software<br>Development | Modelling Physical Systems in Simscape | Developing Robust MATLAB Code and Apps              |
| 16:15 | Modelling and Simulating RF<br>Sensor Systems                                    | Verification of Automatically Generated Code                               |                                        |                                                     |



# The Rise of Engineering-Driven Analytics



# Thankyou



#### More details on ...

- BuildingIQ: Adaptive building energy management
  - http://uk.mathworks.com/company/user\_stories/buildingiq-develops-proactivealgorithms-for-hvac-energy-optimization-in-large-scale-buildings.html?s\_tid=srchtitle
- Scania: Automatic emergency braking using sensor fusion and analytics
  - http://uk.mathworks.com/company/newsletters/articles/developing-advancedemergency-braking-systems-at-scania.html?s\_tid=srchtitle
- Mondi: Predictive Maintenance for polymer-based production machines
  - http://uk.mathworks.com/company/user\_stories/mondi-implements-statistics-based-health-monitoring-and-predictive-maintenance-for-manufacturing-processes-with-machine-learning.html?s\_tid=srchtitle