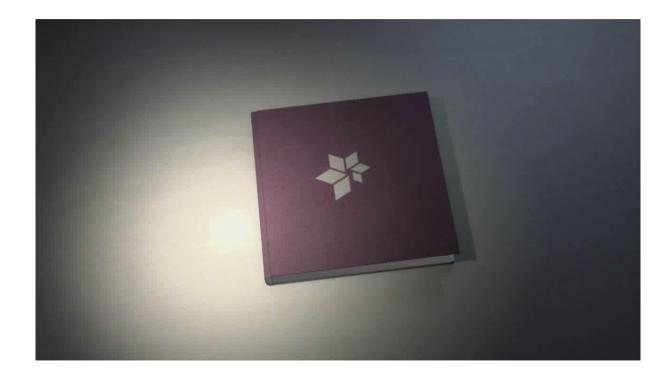


Use of MATLAB in post-processing of offshore measurements

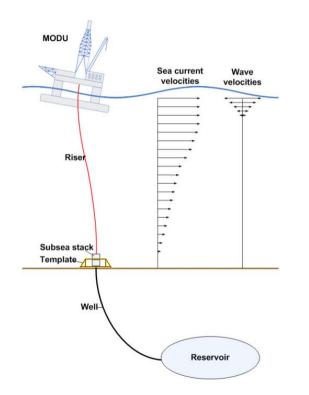
Statoil. The Power of Possible

Presentation outline


- Who we are Statoil and Wellhead Fatigue Group
- Wellhead fatigue why is it an issue?
- Offshore measurements
- Our process from raw data to a report
- Why MATLAB?
- Questions

Who are we?

Statoil



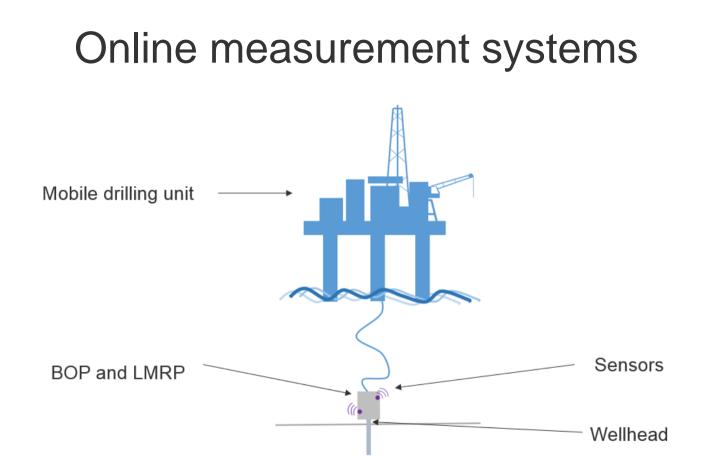
Wellhead Fatigue Group

- Part of the Reaseach and Technology department
- Established in 2008
- Wellhead fatigue analysis is performed to assess the capacity of subsea wellheads prior to drilling operations
- Wellhead fatigue analysis based on DNV method statement
- https://rules.dnvgl.com/docs/pdf/DNVGL/RP/2015-04/DNVGL-RP-0142.pdf

Why is wellhead fatigue an issue?

Source: DNV Method Statement

Drilling operation


What do we do?

Measurement systems

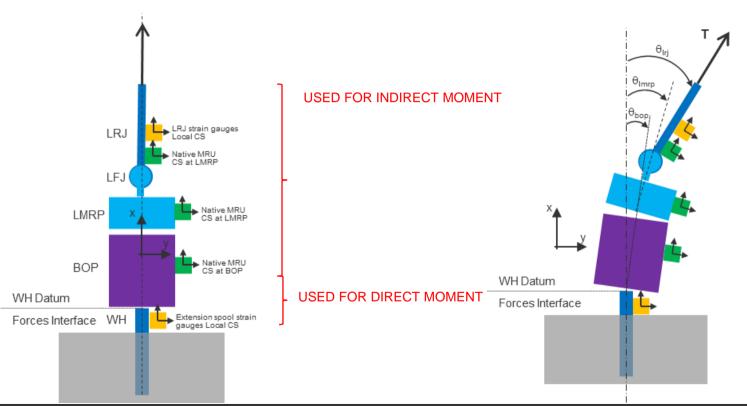
- Online systems
 - Continuously measure data at different locations on the BOP
 - Data is automatically processed, stored and transported to shore
 - Used when fatigue accumulation needs to be monitored throughout the campaign
- Autonomous systems
 - Consist of battery powered sensor packages
 - Data is retrieved at regular intervals and post processed at the end of campaign

Sensors: MRU – motion reference unit

MRU on LMRP

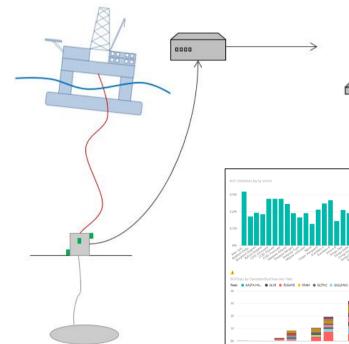
MRU on BOP

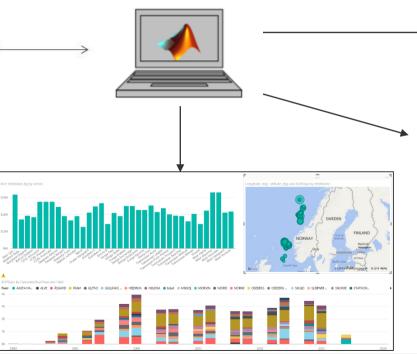
Sensors: LVDT



LVDT on BOP connector

WHF calculation methods

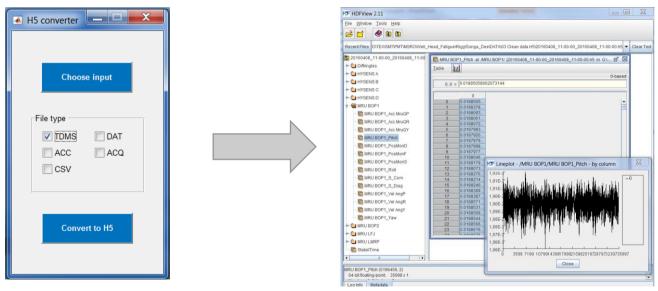




Our process

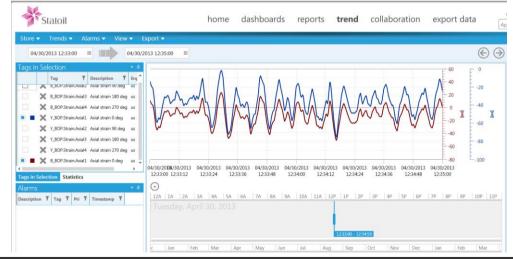
Measurements

New Analyses			Ongoing Analyse:	5 > Cor	Completed Analyses		
New Analysis							
Open personal list settings 🕤							
Drag a column header and drop it here to group by that column							
Ref # 🍸	Priority T	Field	T Well T	Title	T Need Date T	Туре	Template T
0047	1	TORDIS	NO 34/7-I-5	NO 34/7-1-5	Not set	Normal	No
8000	2	ÅSGARD	NO 6507/11-Y-1	NO 6507/11-Y-1	Not set	Normal	Yes
0031	3	ÅSGARD	NO 6506/11-F-3	NO 6506/11-F-3	Not set	Normal	Yes
0007	4	ÅSGARD	NO 6506/12-P-2	NO 6506/12-P-2	Not set	Normal	Yes
0011	5	ÅSGARD	NO 6506/12-N-1	NO 6506/12-N-1	Not set	Normal	Yes
0032	6	ASGARD	NO 6506/12-K-4	NO 6506/12-K-4	Not set	Normal	Yes
0030	7	ÅSGARD	NO 6506/12-NB-1	NO 6506/12-NB-1	Not set	Normal	Yes
0029	8	ÅSGARD	NO 6506/12-P-4	NO 6506/12-P-4	Not set	Normal	Yes
0012	11	ÅSGARD	NO 6506/12-N-3	NO 6506/12-N-3	Not set	Normal	Yes
0013	12	ÅSGARD	ND 6506/12-M-4	NO 6506/12-M-4	Not set	Normal	Yes
•				1			H K 1 2 5

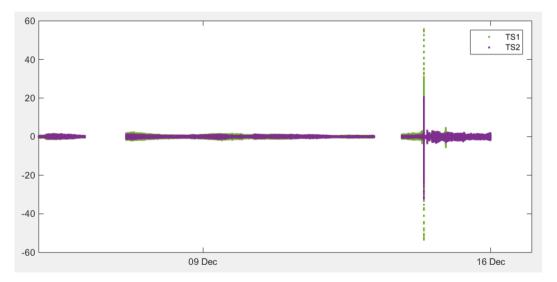

Handling raw data

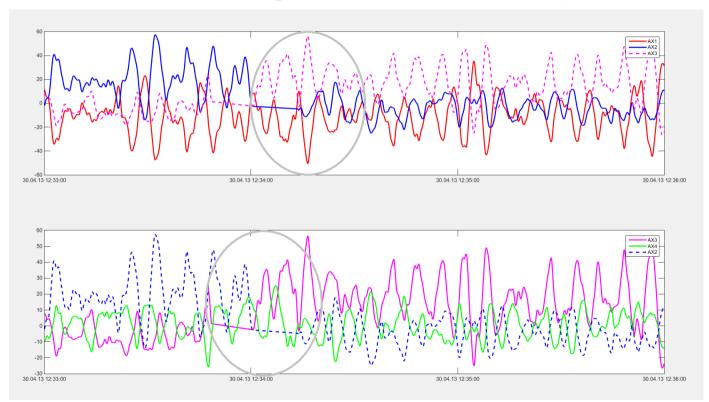
- There are several suppliers of measurement systems, each offering a different sensor set-up and providing the data in a predefined format
- Measurement data provided in several formats including:
 - TDMS files
 - ACQ files
 - PI data base
 - CSV files
 - ACC files
 - DAT files

Handling raw data – H5

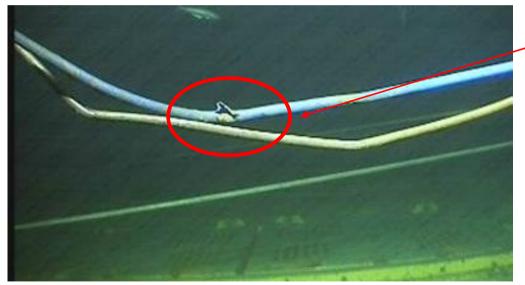

• Using MATLAB's HDF5 support we developed a set of converters allowing us to get the data we receive from vendors to the predefined structure in a H5 file

PI database


- In case of one project, the data is provided not as files but in a database
- White papers: <u>https://pisquare.osisoft.com/docs/DOC-1305</u>
- The white paper published by OSISoft lists 8 ways of using PI Data with MATLAB


Challenge – data quality

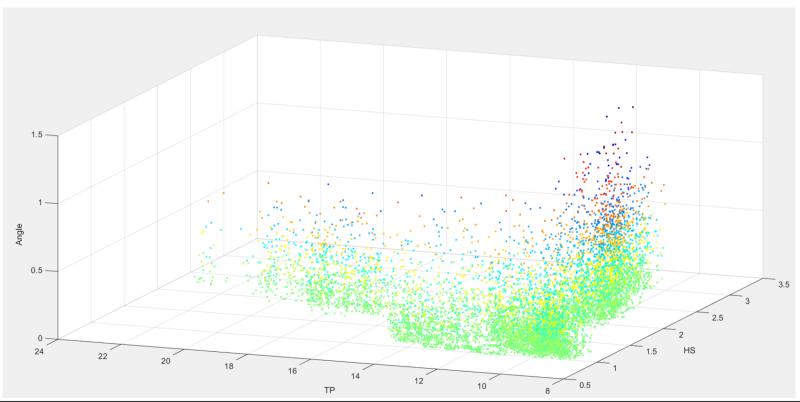
- The quality of provided data differs between sensors and vendors
- We encouter missing values, spikes, asynchronous timeseries


Challenge – data quality

Challenge – missing data

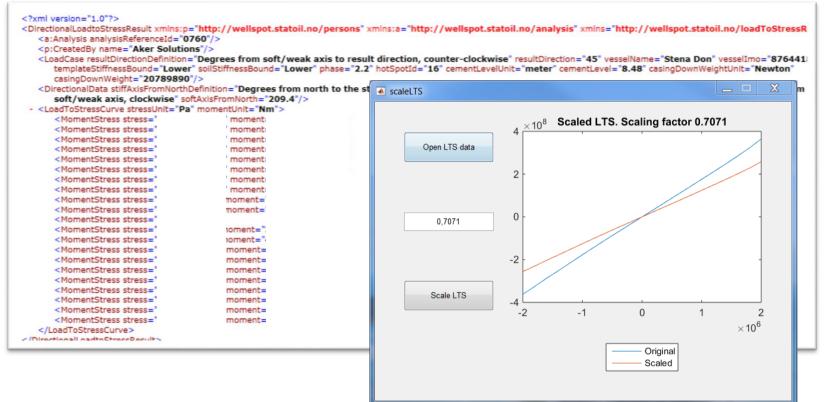
• Due to the harsh environment offshore we encounter hardware malfunctions that lead to loss of data

The cable got tangled during the storm, the coating was damaged


Challenge – missing data

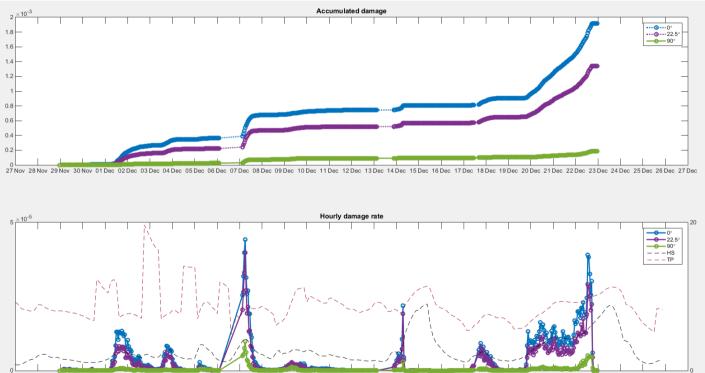
The connector was submerged unblinded

Missing data


Calculating the fatigue damage

In the process of calculating fatigue damage we use following data:

- Data recorded using subsea sensors (H5 files)
- Well specific data results from the local FE analysis (XML file)
- Weather data for the particular rig location (csv file)
- Rig specific data, size of the BOP, LMRP, XT etc



Load-to-stress

Results – accumulated damage

27 Nov 28 Nov 29 Nov 30 Nov 01 Dec 02 Dec 03 Dec 04 Dec 05 Dec 06 Dec 07 Dec 08 Dec 09 Dec 10 Dec 11 Dec 12 Dec 13 Dec 14 Dec 15 Dec 16 Dec 17 Dec 18 Dec 20 Dec 21 Dec 22 Dec 23 Dec 24 Dec 25 Dec 26 Dec 27 Dec

Main reasons for using MATLAB

- Popular across the company
- Built-in support for source control systems
- · Easy to share code/tools with other
- · Support for the technologies and concepts we use
- Worldwide user community
- Support for cloud solutions

References

- DNV Method Statement https://rules.dnvgl.com/docs/pdf/DNVGL/RP/2015-04/DNVGL-RP-0142.pdf
- Russo M., Myhre E., Wolak U., Grytøyr G., "Measured wellhead loads during drilling operations Paper 1 data processing and preliminary results", 2015
- Russo M., Reinås L., Sæther M., and Holden H., "Fatigue assessment of subsea wells for future and historical operations based on measured riser loads", 2012
- Grytøyr G., Lindstad H., and Russo M., "Direct And Indirect Measurement Of Well Head Bending Moments", 2015

Statoil. The Power of Possible

Urszula Wolak Senior Engineer Platform Technology FT MMT RP

m: +47 94470351 e: uwo@statoil.com

©Statoil ASA

This presentation, including the contents and arrangement of the contents of each individual page or the collection of the pages, are owned by Statoil. Copyright to all material including, but not limited to, written material, photographs, drawings, images, tables and data remains the property of Statoil. All rights reserved. Any other kind of use, reproduction, translation, adaption, arrangement, any other alteration, distribution or storage of this presentation, in whole or in part, without the prior written permission of Statoil is prohibited. The information contained in this presentation may not be accurate, up to date or applicable to the circumstances of any particular case, despite our efforts. Statoil cannot accept any liability for any inaccuracies or omission

