

Physical Modeling as Enabler for Simulation-Based Design

April 21st 2016 – Waterfront Congress Center (Stockholm)

1. Physical modeling (simulation-based design)

2. Mechatronic design workflow

3. Design optimization

Agenda

4. Conclusions

First Principles Modeling

First principles (Simulink)

- □ suitable for simple systems
- □ common during 90s

Differential algebraic equations created manually (blocks)

Physical Modeling

Physical Networks (Simscape)

- □ complexity & multi-domain
- □ solver flexibility (testing)
- □ proven (automotive, aerospace)
- □ high priority development

Differential algebraic equations automatically created (topology)

Physical Networks (Simscape)

Physical Modeling (requirements)

system design (integration, optimization)

Physical Modeling (requirements)

system design (integration, optimization)

development of control algorithms

Physical Modeling (requirements)

system design (integration, optimization)

development of control algorithms

hardware-based physical emulation (real-time testing)

Mechatronic Design (recommended workflow)

1. CAD import => 3D mechanical systems in Simulink

2. Kinematic Analysis

- □ imposition of a given kinematic movement (duty cycle)
- evaluation of required torque/forces

3. Dynamic Analysis

- □ closed-loop motion control
- □ application of torque and/or force
- □ control design (tuning, stability)

4. Actuator Design

- □ selection of actuator (PMSM, brushless...)
- optimal sizing (avoid overdimensioning)
- □ electric effects (network, battery, energy consumption...)

5. Model re-use for real-time testing

- □ discretization [solver, sample time]
- □ benchmark [fidelity vs. speed]
- □ code generation

Design Optimization (based on physical model)

Hydro-mechanic drill mechanism (unlock)

Hydro-mechanic drill mechanism (lock)

Design Optimization – task 1

1. Parameter Estimation (calibration)

- measurement signals to MATLAB workspace
- □ optimization-based method (iterative execution)

Design Optimization – task 2

2. Sensitivity Analysis (system insight)

parameter sweep [MATLAB scripting]
statistic methods [formal & systematic]

Conclusions

Simulation-based Design = System

Simulation-based Design = Controls

Simulation-based Design = Testing

MATLAB/Simulink offers a unique environment for data analytics & embedded development

Partnership with MathWorks reduces risk and accelerates the adoption process

Author contact information:

Juan Sagarduy Application Engineer PhD MathWorks AB (Kista – Stockholm) E-mail: juan.sagarduy@mathworks.com Tel: +46 85051 6955

NORDIC MATLAB EXPO 2016

21 April | Stockholm

