
embedded world Conference 2014 

 

 

 System objects: Design, optimization, and C code 

generation for signal processing in MATLAB®   

 

                             Marco Roggero 

Application Engineer 

The MathWorks GmbH 

Aachen, Germany 

marco.roggero@mathworks.de 

Youssef Abdelilah 

Senior Product Manager 

The MathWorks 

Natick, MA, United States 

youssef.abdelilah@mathworks.com

 

 
Abstract—Applications that run on embedded electronic 

devices are continuously increasing in complexity and are 
processing ever larger amounts of data. To develop these 

applications, engineers need a design flow that supports rapid 

development of proof-of-concept algorithms and simulation with 

complete and realistic data. Further, engineers are looking for 

ways to directly implement these algorithms on embedded 

platforms. 

System Toolboxes introduce new libraries of sophisticated 

algorithms implemented with System objects, as well as 

MATLAB® functions and Simulink® blocks. System objects are 

available for signal processing applications including computer 

vision, image processing, communications, and phased array 
systems.   

 

System objects make it possible to perform stream-based or 

frame-based signal processing with a reduced memory footprint, 

which makes real-time simulations possible and memory-efficient 
for applications that handle signals and large amounts of data. 

 

The separation of initialization steps from in-the-loop processing 

when using System objects provides a significant speed up for 

most algorithms. Additional speed can be achieved by automatic 
conversion of MATLAB functions into C code to be used as a 

MEX (MATLAB-executable) function. 

 

System objects support automatic generation of C code for 

standalone PC applications, dynamic libraries, and embedded 
targets (with code optimization targeting specific embedded 

processor families using floating-point or fixed-point arithmetic). 

 

In this article, using examples from the signal processing, image 

processing, and communications fields, we illustrate how System 
objects can simplify and speed algorithm development, accelerate 

simulations in MATLAB, reduce the memory footprint when 

working with signals and large amounts of data, and 

automatically generate embeddable C code. 

 

Keywords— System objects; MATLAB; signal processing; 

stream processing; frame-based processing;  

I.  INTRODUCTION 

System objects are MATLAB® objects that support a 

simplified object-oriented workflow to facilitate the creation, 

configuration, and execution of algorithms, providing easy 

access to real-time data and support for automatic code 

generation. 

Each System object contains configurable properties and 

methods for specifying parameters, options , and operations 

that can be used and invoked for a specific object. 

For example, to create an object named “Microphone” using 

the class dsp.AudioRecorder you can type this command in 

MATLAB: 

 

>> Microphone = dsp.AudioRecorder 

This will create a dsp.AudioRecorder object with default 

properties (Figure 1). 

Fig. 1. Default properties of a dsp.AudioRecorder object . 

mailto:marco.roggero@mathworks.de
mailto:youssef.abdelilah@mathworks.com


 

To run the System object, you use the “step” method; for 

example: 

>> audioIn = step(Microphone);  

 

The command above creates a variable named audioIn 

containing a frame for the channels managed by the selected 

audio recorder device. 

 

At the end of your script or function, you can use the “release” 

method to release any resources allocated by the System 

object; for example: 

 

>> release(Microphone) 

 

 

System objects support real-time simulations with a reduced 

memory footprint, faster execution,  automatic generation of 

embeddable C/C++ code for fixed-point and floating-point 

data types, and the use of code replacement libraries for code 

optimization when targeting specific embedded processor 

families  such as ARM Cortex processors. 

 

The following sections cover characteristics and features  of 

System objects, differences between System objects and 

standard MATLAB functions, and conditions to keep in mind 

to make the most of the advantages offered by System objects. 

 

II. REAL-TIME SIMULATIONS 

Two main conditions have to be satisfied for real-time 

simulations. First, the simulation must be fast enough to 

process the incoming data. Second the memory needed for 

data processing must not exceed the simulation system’s 

available memory. 

For each incoming frame, time is needed both for data 

acquisition and data processing.  Real-time signal processing 

is only possible if the frame time is longer than the total time 

needed to acquire the data and process it (Figure 2).  

 

Fig. 2. Data acquisition and algorithm processing times. 

 

A. Algorithm acceleration  

System objects help accelerate MATLAB algorithms in three 

main ways.  First, most System objects use precompiled 

functions. Second, System object initialization is decoupled 

from in-the-loop processing. Third, most System objects 

support automatic C code generation so they can be converted 

into MEX functions.  

Note that not every System object is guaranteed to be faster 

than  comparable MATLAB code that provides similar results. 

Nevertheless, System objects do make most algorithms faster. 

To get the best results , we recommend dividing algorithms 

into smaller steps and replacing each step’s MATLAB 

functions with System objects as appropriate. After comparing 

the performance of the algorithm with and without System 

objects, select the version that provides results faster. 

 

To see how System objects  decouple object creation and the 

object’s  use in the processing loop, examine the code shown in 

Figure 3.  

 

The code is an example of creating a test bench for an audio 

signal processing system. Two System objects are initialized, 

used for 20 seconds in the processing loop, and then released. 

 
Fig. 3. Script that creates a test bench for audio signal processing systems. 

Fig. 4 shows the spectrum of an audio signal visualized with 

the Spectrum Analyzer System object. 

 

Fig. 4. Signal spectrum visualized with the Spectrum Analyzer System 
object. 



embedded world Conference 2014 

 

In this example, the System objects’ initialization is separated 

from their use. Each System object is declared and its 

parameters are set once. The processing loop invokes the 

System objects by calling the “step” method. Each loop 

iteration uses the existing System objects. After processing is 

complete, the System objects are released together with their 

allocated resources. Note that MATLAB functions providing 

the same results would be reinitialized and released each time 

they are called. System objects not only contribute to 

performance improvements, but also simplify code 

maintenance and reduce coding mistakes. 

 

The next example compares two algorithms for detecting red 

objects that are not round in a video in which each frame is an 

RGB image. The first function (Figure 5) was written using 

only MATLAB functions; the second function (Figure 6) was 

written using a mix of System objects and MATLAB 

functions. 

 

Examination of the code from these two examples reveals a 

few noteworthy observations. 

 

In the System objects example, the System objects are 

initialized only once within the “if..end” statements. As a 

result, the System objects and their parameters are declared 

only the first time this function is called. In subsequent calls of 

this function, the System object declaration will be skipped 

and only the processing loop will be executed. 

 

 
Fig. 5. Example of code for object detection written using only MATLAB 
functions. 

 

Fig. 6. Example of code for object detection written using a mix of System 

objects and MATLAB functions. 

 

Compare the lines of code needed for this image processing 

task (without the System object initialization, which takes 

place only when the function is called to process the first 

frame). Note that the first function used 15 lines of code, while 

the System objects version needs only 5 lines to achieve the 

same result. 

 

During simulation, the first function supported a speed of 12 

frames per second, while the function with System objects 

version could process 80 frames per second – a rate five times 

faster than the first function. 

 

For this image processing example we automatically generated 

C code for the System objects algorithm and compiled it into a 

MEX function. This new version of the algorithm was able to 

process more than 130 frames per second – more than 10 

times as many as the initial version of the algorithm. 

 

Note:  Simulation speed depends not only on the MATLAB 

algorithm in use but also on the hardware on which it is 

running and other processes that may be executing on the 

machine. For all use cases discussed here, comparisons were 

made using a consistent hardware and software setup. 

 

We performed similar measurements on an acoustic tracker 

application that estimates the direction from which an audio 

signal is coming by measuring the time delay of arrival of the 

sound at an array of four microphones. We found similar 

results.  The algorithm that used System objects was  4.9 times 

faster than the initial algorithm, which did not make use of 

System objects. The use of automatic code generation and 

MEX functions produced an algorithm that was  11.9 times 

faster than the initial algorithm.  

 



The acceleration achievable with System objects or automatic 

C code generation depends heavily on several parameters, 

including the quality of the original MATLAB code, the kind 

of algorithm and application, and the data types used in the 

simulation. Figure 7 shows a comparison of results from three 

different applications using algorithms such as Discrete 

Cosine Transform (DCT)with standard toolbox functions only, 

with System objects, and with code generation and Parallel 

Computing Toolbox (PCT). 

 

 

Fig. 7. Comparison of execution speeds for three different applications using 

different strategies for algorithm acceleration.  

 

B. Memory footprint reduction with stream and  frame-based 

processing  

A typical MATLAB function used to process a stream signal 

will work on the entire variable or file that holds the signal 

information. If necessary, data will be copied one or more 

times depending on the algorithm.  When processing large 

amounts of data, this can require a substantial amount of 

memory to be allocated. 

System objects are designed to support automatic and easy 

stream and frame-based processing [1]. If a particular 

algorithm requires it, a System object will create copies of 

processed data and allocate memory.  However, since they 

work on a single frame, the same algorithm will require 

significantly less memory to be allocated than the same 

algorithm without System objects (Figure 8). 

 

 

Fig. 8. Frame-based processing requires less memory.  

 

 

III. ALGORITHM IMPLEMENTATION 

 

Once the mathematical idea behind an algorithm has been 

verified via simulation, several tasks remain before it can be 

tested on a  embedded processor.  These tasks include 

selecting the data types supported by the microcontroller, 

generating  C code, and optionally optimizing the code for the 

target microcontroller. 

 

System objects support most  floating-point and fixed-point 

data types, enabling engineers  to simulate and test the 

algorithm in MATLAB using the actual data type of the final 

implementation.  These simulations can be invaluable in  

detecting overflow conditions and identifying and resolving 

discrepancies between the reference algorithm and the final 

algorithm. 

 

After the algorithm has been verified with embeddable data 

types, the engineers can automatically generate C code for the  

embedded processor (as well as for standalone applications or 

libraries). 

 

Engineers can then use code replacement libraries to optimize 

the automatically generated C code. Embedded processors and 

associated compilers have special instructions or intrinsics to 

support certain operations that are used frequently in typical 

embedded applications. These processor-specific instructions 

execute much faster than their ANSI/ISO C equivalents. Use 

of these instructions can improve code performance 

significantly. Engineers can select the target processor's code 

replacement library to generate processor-specific code that 

takes advantage of the processor's special instructions or 

intrinsics [2]. 

 

 

CONCLUSIONS 

This article has covered the use of System objects  to model 

complex dynamic systems. System objects enable engineers to 

model real-time signal processing systems using streaming 

signal processing techniques, run faster simulations with 

larger data sets, and  automatically generate C code from 

MATLAB signal processing algorithms.  As a result, the 

process of taking a design concept to the final embedded 

implementation is faster, more efficient, and less costly. 

 

 

REFERENCES 

 
[1] http://www.mathworks.com/discovery/stream-processing.html 

 

[2] http://www.mathworks.com/help/rtw/examples/optimizing-embedded-
code-via-code-replacement-library-1.html

 

http://www.mathworks.com/discovery/stream-processing.html
http://www.mathworks.com/help/rtw/examples/optimizing-embedded-code-via-code-replacement-library-1.html
http://www.mathworks.com/help/rtw/examples/optimizing-embedded-code-via-code-replacement-library-1.html

