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Agenda
= How to Train a Robot to Walk
— What is reinforcement learning?
— Overview of using a traditional controls approach

— Applying the reinforcement learning workflow to train the robot with Reinforcement
Learning Designer
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Reinforcement Learning: A Subset of Machine Learning

machine learning

/—%

unsupervised
learning

[unlabeled data]

supervised reinforcement

learning

[labeled data]

learning

[interaction data]

Reinforcement learning:

= Learning a behavior or

. ,‘._'5;\:;.:’;:_-_: 3% #’,.. T af;complishing a task through
X \ ++t trial & error

\ . .

e 2 S [interaction]

o e A

AR o a S = Complex problems typically need

O deep models

clustering classification and control [Deep Reinforcement Learning]

regression and

decision making
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Reinforcement Learning Applications

autonomous vehicles

video games

v

robotics controls
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How do We Train a Robot to Walk

Goal: Train a robot to walk a straight line

What sequence of motor commands do we need to make the robot walk?
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The goal of control

which actions generate the desired behavior?

\/

octions behavior




4\ MathWorks

The goal of control

actions ;m behavior



A walking robot — a traditional controls approach
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A walking robot — an alternative approach
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How do we design
this?

J

Motor
Commands

>

: Motor
Commands
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What Is Reinforcement Learning?

1

Reinforcement learning is learning what to do—how to map situations to
actions—so as to maximize a numerical reward signal.

The learner is not told which actions to take, but instead must discover
which actions yield the most reward by trying them. , ,

Yay!
Here is
your treat!

Sutton and Barto,
Reinforcement Learning: An Introduction

11


http://incompleteideas.net/book/the-book-2nd.html

Some Reinforcement Learning Terminology
agent

motor torques
actions

function

rewards
how did it do?

observations
(states)

joint angles
acceleration
veloCity
camerao. vision
etc.

environment

4\ MathWorks
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Learning the Optimal Policy

agent

Policy
function that maps

observations to actions |
function

Reinforcement Learning
Algorithm

reinforcement
optimization method used to learning

find the optimal policy that algorithm
maximizes accumulative
long-term reward

4\ MathWorks

actions

rewaords

observations
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Reinforcement Learning Workflow

environment  reward  policy training deploy

3 %K
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Reinforcement Learning Workflow

environment

4\ MathWorks
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Environment

= Everything outside of an agent

actions

rewards

%

observations

envirenmen

environment

4\ MathWorks
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Environment

Everything outside of an agent

Ur1 ---URN
Ur1 ---Upn

actions

: rewards

observations

X} Y; Z; l/)) 0; (,b
qr1 - RN

di1 - qdLn
+ derivatives

Fp, F

environment

‘ MathWorks
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Real vs Simulated Environments

real
agent environment
actions S ’r A
¢ rewards
observations ( b
)
( )
© Accuracy
® Risk
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agent simulated

| environment
actions _

>
rewards

€

observations

© Training speed

© Flexible simulated conditions

© Safety

@ Model inaccuracies
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Define Simulated Environment

’i rWalkingBipedRobot * - Simulink = O X
SIMULATION DEBUG MODELING FORMAT APPS ’? ) LG 0
[ 1
{1 Open ~ 1] Stop Time | Tf \ . i & v
d\-:] E S |5} > » N : : ‘ @ QJ “[> m
ave ¥ ) s v - i v
New Library S Step Run Step top Data
v &9 Print ¥  Browser C H@ Fast Restart Back ¥ v Forward Inspector
FILE LIBRARY PREPARE SIMULATE REVIEW RESULTS
< riwalkingBipedRobot X Agent
® @dWalkingBipedRobot >
Q : : . Enable animation
5 Walking Robot: Reinforcement Learning (2D) ————
[ﬁ Disable animation
Copyright 2020 The MathWorks, Inc. T T
3 1
LS| 1
all
(&)
, P meas
observation observation
P prevAct action
Calculate Observation Renen
& P meas
reward reward
P prevAct
Calculate Reward
cumulative_reward » D
2o @————p meas . isdone isdone Walking Robot
(@4 Cumulative
[E] Check if Done Figped
Agent
»
Ready 117% ode23t
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Physical modeling of robot
dynamics and contact
forces using Simscape

https://www.mathworks.com/help/reinforcement-learning/ug/train-biped-robot-to-walk-using-reinforcement-learning-agents.html
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https://www.mathworks.com/help/reinforcement-learning/ug/train-biped-robot-to-walk-using-reinforcement-learning-agents.html

Environment - Simulink

envirenment

¢ walkingRobotRL2D - Simulink

SIMULATION
Zy G 0pen ~ ] ] Stop Time | TF ~ — e, P
= — = e lr 4 @ % W)
o &l save ~ Library signal ~ | Normal | step 5 Step Data Logic Bird's-Eye T
~ &= Print -  Browser Table @ Fast Restart Back v - Forward Inspectar Analyzer Scope

FILE LIBRARY PREPARE SIMULATE REVIEW RESULTS -

walkingRobotRL2D

® 4

[*a] walkingRobotRL2D »

4 . . . .
= Walking Robot: Reinforcement Learning (2D) Enable animation
= Copvright 2019 The MathWorks, Inc. Disable animation
1l
—— P meas Y
observation —— P observation
prevAct action »!inp sensors
Calculate Observation Sensors
& ——— P meas
reward P reward
prevAct
Calculate Reward
cumulative_reward ——p» D Walking Robot
&—————Pp meas isdone —— P isdone
Cumulative
- Check if Done Reward
" RL Agent

ode23t

256%
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Reinforcement Learning Workflow

rewaonrd

4\ MathWorks

21



4\ MathWorks

Reward p 4

A function that outputs a scalar number that represents the immediate
"goodness" of an agent being in a particular state and taking a particular
action.

agent
software actions
rewards
——ares

observations

environment

reword = function (state, action)

22



Defining the Reward

want me to go?

j“ ~—{___ this is the way you

N= v~ 3y* - 502" + 25 % - 0.0y W *

| |

minimize actuator effort

walk as long as possible

\
keep trunk at initial height

don't stray from path

forward velocity

4\ MathWorks
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Defining the Reward

P4, riwalkingBipedRobot * - Simulink = O X
SIMULATION MODELING
| Open ~ ] Stop Time ‘Tf Ca = —
dubEs B q q FEm—— d @ b 2
ave w . : 1 v - i v
New Library Log AdC il Step Step Stop Data
v [ Print ¥  Browser gnais Ewel H@ Fast Restart Back ¥ Forward Inspector
_FLE _LIBRARY | PREPARE SIMULATE | REVIEWRESULTS | &
: \_1 riwalkingBipedRobot > Agent
® |[’a] iwalkingBipedRobot P v
Q A § . Enable animation
Walking Robot: Reinforcement Learning (2D) —————
lﬁ ; Disable animation
Copyright 2020 The MathWorks, Inc. T
=3
()
EJ =———=—=Pp meas /
observation ———— | observation
P prevAct action =
Calculate Observation semon
@——=—"P meas |
reward —- ’ Aﬂp_nt
— prevAct
Calculate Reward
cumulative_reward F——» D
— @——P meas . isdone f—— P isdone Walking Robot
(] . . Cumulative
lg_f] Check if Done Reward
Agent
»
Ready 117% ode23t
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reward

&

Reward defines task to
learn
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»

reward
Defi ning the Reward
ﬁ rIWalkingBipedRobot/Calculate Reward - Simulink - O X
SIMULATION MODELING
1 0Open ~ ] Stop Time | Tf - [ -
@O - @ 5 o B8 ==l lq @ b o
ave - . Al . - - -
New Library el Add Signal Nermal ¥ Step Run Step Stop Data
~ [ Print v | Browser ignals viewer Table @ Fast Restart Back = - Forward Inspector
FILE LIBRARY PREPARE SIMULATE REVIEW RESULTS a
L= 4 Calculate Reward RL Agent
® riWa\kingBipedRobot » Calcu\ate Reward v
Q
Reward function inspired by J A TS 2
E3 "Emergence of Locomotion 1 r=v.,- 3Hl - 5021 + 25— - 0.02 E LL't
Behaviours in Rich Environments” 't' X Tf -l
Google DeepMind, 2017 i
= hitps:ifarxiv.org/pdfif1707.02286.pdf Forward Reward Scaling
- minimize actuator effort
& walk as long as possible
0 keep trunk at initial height
P+
Deviation Penalty Scaling Y forward_raward don't stray from PQ-H-,
>+ deviat I
— eviation_penalty ; For‘qu‘d VeIOCI‘{-H
joint_penalty "1” reward
= p u+b » u?
Subtract Initial Height . _ duration_reward
Deviation Penalty Scaling Z
ﬂ Z =| 0.02
prevAct I/
Torque Penalty Scaling » D
. e | =
25" TsITE

Individual Rewards
Duration Reward

Ready 100% ode23t
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Reinforcement Learning Workflow

policy

&\ MathWorks
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The Agent

actions

rewards

#

observations

environment

‘ MathWorks

policy

T
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Learning the Optimal Policy

agent

Policy
function that maps

observations to actions |
function

Reinforcement
Learning Algorithm

reinforcement
optimization method used learning

to find the optimal policy algorithm

policy

T

actions

rewards

observations
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policy

Actor-Critic Methods 06k

= Two neural networks (typically) are simultaneously tuned during training:

— The actor tries to learn the best action at each state

— The critic tries to
= estimate the value of each state/state & action the actor takes
= critique/guide the actor’s choices

CRITIC

f %
state
observations

ACTOR

value the total reward an agent expects to receive from a state and onwards into the future 2

value >

ochons
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policy

Actor-Critic Training Cycle r

previous estimate of value

R(s, a) + Y-max Q'(s’, ) - Qls, o)

new best estimate of value

erronr

reward

( COMPQI"G

SJ(OTL; @ /
observations
tions 7
/ ac
AN

ACTOR AN / update actor

%
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Creating the Agent

= Constructing a DDPG (Deep Deterministic Policy Gradient) Agent
— Create the critic network
— Create the policy network
— Create the agent with actor and critic network and set hyperparameters

&\ MathWorks

policy

T
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Creating the Agent with Reinforcement Learning Designer

668
(<]

Hi L Se 0@ e]=zzz

B & oo

8 @ & B8 @

% =Y oW seme EELY PIDZ3J|  Analoglnput  Analog Modbus  CAM Explorer  CAMFD System Wireless REE Y image Iy
e oE2c 47 BIE Recorder  Output Gen..  Explorer Explorer  Identification Waveform G... Acquisition
g 1] =
o E Gl | Eb Caleb r RL P hd
EREE @ [ 2012 BE I - EA\Caleb\RL\ TrainBipedRobotToWalkUsingReinforcementL eamingAgentsExample\ TrainBipedRobot ToWalkUsingReinforcementl eamingAgentsExample.mb x |[zer 32 @
s | TrainBipedRobotToWalkUsi cementLearningA mb | + | s 2t
ACCwithTrainedAgentRL 51 ~
g g numdbs = 29; =} actinfo Ix1 riNum,
blob_storage 5 obsInfo = rlNumericSpec([numObs 11); (= H actuatorType 1
Jayden 6 obsInfo.Mame = ‘observations’; = i blk ‘riwalking
) , ) .
roundabout- master Create the action specification, contactﬁdarnpmg . 50
roundabout- master_error contact_point_radius 1.0000e-0.
TrainBipedRobotTowalkUsingReinforcem... 7 numAct = 6; 0 ' : i contact_stiffness 500
g P . . 8 actInfo = rlNumericSpec([numAct 1], 'Lowerlimit',-1, 'UpperLimit’,1); P I doubls
¢ ACCwithTrainedAgentRL.zip z T & DT R O density 5()
i roundabout- master.zip = env Tx1 Simuli
Create the environment interface for the walking robot model. foot_density 1000
10 blk = [mdl,’/RL Agent']; foot_offset [-1.00]
11 env = rlSimulinkEnv{mdl,blk,obsInfo,actInfo); foot x 5
12 env.ResetFen = @(in) walkerResetFen(in,upper_leg length/188@,lower_leg length/108,h/188); fOOtJ 4
foot_z 1
Select and Create Agent for Training 9.8067
This example provides the option to train the robot either using either a DDPG or TD3 agent. To simulate the robot with the agent of your choice 18
set the AgentSelection flag accordingly. 0.0250
[-0.4510,0.
13 AgentSelection = 'DDPG'; ~
14 switch AgentSelection [-045100
15 case 'DDPG’ 21.0125
16 agent = createDDPGAgent(numObs,obsInfo,numAct,actInfo,Ts); 1
17 case 'TD3" 5 o +
18 St = TR Ao Gure ST Tt Hjoint_limit damping 10
joint_limit_stiffness 10000
joint_stiffness 0
fe > H leftinit [0:0,-0.18C
L dRobotTe ementl A ] 1 leg_radius 0.7500
H lower_leg_length 10
-l mass 0.1600
nm
000 oo oo oo -l max_torque 3
A mdl ‘riwalking
1 motion_time_constant 0.0100 ~
< >

&\ MathWorks
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Defining the Agent

’i rIWalkingBipedRobot * - Simulink = O X
SIMULATION DEBUG MODELING FORMAT APPS s c o
| Open ~ 1] Stop Time | Tf e =
of = & > q = ‘ d @ b 2
New - e Library Log Adc SEna Step Run Step S Data
v [ Print ¥  Browser gnais EWE B@ Fast Restart Back ~ v Forward Inspector
FILE LIBRARY | PREPARE SIMULATE REVIEW RESULTS Iy
< riwalkingBipedRobot  Agent
© | [Pa)riwalkingBipedRobot b v
Q 2 g f Enable animation
Walking Robot: Reinforcement Learning (2D) —_—————
[ﬁ Disable animation
Copyright 2020 The MathWorks, Inc. T e
=%
LE| 1
z
&=
[:J P meas
observation ——— —»{ observation
¢ PiprevAct action —
Calculate Observation ROR
== meas
© ' reward —— P reward Agent
— prevAct
Calculate Reward
cumulative_reward F— —» D
a meas . isdone f—— —P{ isdone Walking Robot
(@4 b Cumulative
@ Check if Done Rwped
Agent
»
Ready 117% ode23t
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Define the agent
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Reinforcement Learning Workflow

training

O

&\ MathWorks
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Training Our Deep Reinforcement Learning Agent &

worker | Accelerate training by running simulations in parallel on

[._,.j multicore computers, clusters or the cloud

K :
— client
[. E .i) r envi ronmenﬂ
(l:@ . -

wOr'ker‘N Train with the GPU when using

[.:.i) Deep Neural Networks for Actor

or Critic representations

4\ MathWorks
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raining the Agent

TRAIN SIMULATE DDPG AGEMT

A
B o e B
Import View View Train Simulate Export
=4 Actor Model  Critic Model 4
NAME | IMPORT REPRESENTATION NEXT STEPS
" Agents w agentDDPG
agentDDPG Observation Specification Action Specification

REINFORCEMENT LEARNI

2gentDDRG

gl

Observation Name Domain Dimension Data Type Action Name Domain Dimension Data Type

observations continuous [291] double + | |foot_torque continuous 61] double =

~ Hyperparameters

Agent Options Actor Options Critic Options

Sample time 0.025 Learn rate 0.0001 Leamn rate 0.001

Environments

env Discount factor 0.99 Gradient threshold 1 Gradient threshold 1
Execution environment (JCPU (8)GPU
Experience buffer length
~ More Options ~ More Options » More Options
[|Reset bufier [ | Save buffer Optimizer |adam v |
Target smooth factor o001 D i offset 1e-08
Results
Target update frequency 1 Gradient decay
Squared gradient decay 0.999
Gradient threshold method | 12norm v |
L2 regularization 0.0001
~ Exploration
Preview Ornstein Uhlenbeck Noise Options Ornstein Uhlenbeck Noise
Standard devition | o f ‘ ‘ [
i bl Nt A |
Mean [ 9 A o « "
= frk'Nh‘\‘ h'\r’”'ﬂ h,\'qr\ i \“"i \rY| A | ,j‘l/ ol A Y. M I‘JV! |: ”LH
» More Options = [ Wl B WPV A ] A ¥
W y | 4/ vy f\j 1"
v v WV
V /
Plot Options . | I | | | | | | L ]
X-axis limit 1000 0 100 200 300 400 3?225 600 700 800 9200 1000
14 [l Agent opened: "ageniDDPG"
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REINFORCEMENT LEARNIN

TRAIN SIMULATE

Environment| env

Agent| agentDDPG -

Nt

DDPG

ENT

Number of Episodes| 10 F
=) Max Episode Length | 400 uuuu [>
| C——— o | e | smokee

[] Stop on Emor Parallel * -
SYSTEM SIMULATION OPTIONS | SIMULATE
" Agents agentDDPG
ageniDDPG
agentDDPG_Trained ~ Overview

Environments
env

Results
experiencel
trainStats1

Preview

The DDPG algorithm is an actor-critic reinfercement leaming methed which computes an optimal policy that maximizes the long-term reward.

| Learn maore |

Observation.Specifi Action Specification

Observation Name Domain Dimension Data Type Action Name Domain Dimension

observations confinuous 291 double | |fool_torque continuous [61]

~ Hyperparameters

Agent Options Actor Options Critic Options
Sample time E Leam rate Leam rate @I
Discount factor 099 Gradient threshold ’—T‘ Gradient threshold :l
Execution environment GPU
Batch size 128
Experience buffer length ﬂl
~ More Options ~ More Options » More Options
|| Reset bufier [ | Save buffer Optimizer |adam

Denominator offset

Target smooth factor 0.001
Target update frequency 1 Gradient decay

Squared gradient decay 0.999

Gradient threshold method | 12norm v |

L2 regularization 0.0001

~ Exploration

Ornstein Uhlenbeck Noise Options Ornstein Uhlenbeck Noise

Data Type

double

2
Standard deviation 03 ‘
1
= - ﬁ,ﬂy \ ﬂ[h hn i P WM
+ More Opt = A Vi Il [ vy
: Ul W™

]

&\ MathWorks
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Reinforcement Learning Workflow ) & Bmemd N
environment  reward  policy training deploy

3 % K

reward shaping
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Reward Function Design Matters

| want my robot to walk forward. Let’s set the reward to be the robot’s forward velocity.

4\ MathWorks
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Reward Shaping to Improve Learning T T

Let’s add a reward term for each time step it remains upright and a penalty for not maintaining a torso height

45



Reward Shaping to Improve Learning

Let’s add a penalty for the energy used for actuation

‘ MathWorks
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Reward Shaping to Improve Learning

Let’s add a penalty for deviating from the line

‘ MathWorks
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Reinforcement Learning Workflow

4\ MathWorks

deplog
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Deploy policy to the target hardware

offline simulation target hardware

environment real
model environment

R

(@D

RL

Automatically generate C/C++ or CUDA code
to run the policy on an embedded system

4\ MathWorks

deploy

we
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Policy Deployment to Hardware Platforms

Policy

4

Intel ® is a trademark of Intel Corporation

E—

NVIDIA® and TensorRT ® are registered trademarks of NVIDIA Corporation
Arm @ is a registered trademark of Arm Limited (or its subsidiaries)

Code

Generation

Auto-generated
Code
(C/C++/CUDA)

<
0066

\?ib

QA

@?‘

GPU Coder

e—>
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deplog

T

Intel

MKL-DNN
Library
NVIDIA

| @ TensorRT &
[E; CuDNN

Libraries

Arm
Compute

Library
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Key takeaways

= Reinforcement Learning can solve complicated control and decision problems
« Reward Shaping can improve learning outcomes

« MATLAB and Simulink provide a complete workflow for Deep
Reinforcement Learning
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