= =
ABY 23

Application Engineer @ MathWorks
calebkim@mathworks.com y
<} MathWorks:

mailto:calebkim@mathworks.com

N >
V

~ .
L e

MM4. MATLABL 2 A|xHS= ZtHg}sl

MATLABI} SHH 8= El2{y 43 St HEMST

o>

US4 2%
Application Engineer @ MathWorks

calebkim@mathworks.com) MathWOI‘kS

Accelerating the pace of engineering and science

mailto:calebkim@mathworks.com

4\ MathWorks

Agenda
= How to Train a Robot to Walk
— What is reinforcement learning?
— Overview of using a traditional controls approach

— Applying the reinforcement learning workflow to train the robot with Reinforcement
Learning Designer

4\ MathWorks

Reinforcement Learning: A Subset of Machine Learning

machine learning

/—%

unsupervised
learning

[unlabeled data]

supervised reinforcement

learning

[labeled data]

learning

[interaction data]

Reinforcement learning:

= Learning a behavior or

. ,‘._'5;\:;.:’;:_-_: 3% #’,.. T af;complishing a task through
X \ ++t trial & error

\ . .

e 2 S [interaction]

o e A

AR o a S = Complex problems typically need

O deep models

clustering classification and control [Deep Reinforcement Learning]

regression and

decision making

4\ MathWorks

Reinforcement Learning Applications

autonomous vehicles

video games

v

robotics controls

4\ MathWorks

How do We Train a Robot to Walk

Goal: Train a robot to walk a straight line

What sequence of motor commands do we need to make the robot walk?

4\ MathWorks

The goal of control

which actions generate the desired behavior?

\/

octions behavior

4\ MathWorks

The goal of control

actions ;m behavior

A walking robot — a traditional controls approach

4\ MathWorks

5
((\' Observations 4 A
) — Cquterq — EF;eatu;e i i.Stcﬂi (s:os?;r:: >
ata xtraction S |mAq ion y Motor
Q) _) Commands
)) —»> Sensors
4 A
))
Leg & Trunk Motor
Balance ? . >
Trcuectones) Control) Motor
Commands
Observations
g J 9

A walking robot — an alternative approach

((N

C
)

)

)
)

—_

—

—_

—

ll
. 3

Observations :

Camera
Data

Sensors

Observations

Camera
Data

Sensors

-

Feature State Control

Exiraction EsﬁmAq’rion System
\

* *
. .
--

—

—

_

Black Box
Controller

\

4\ MathWorks

How do we design
this?

J

Motor
Commands

>

: Motor
Commands

10

4\ MathWorks

What Is Reinforcement Learning?

1

Reinforcement learning is learning what to do—how to map situations to
actions—so as to maximize a numerical reward signal.

The learner is not told which actions to take, but instead must discover
which actions yield the most reward by trying them. , ,

Yay!
Here is
your treat!

Sutton and Barto,
Reinforcement Learning: An Introduction

11

http://incompleteideas.net/book/the-book-2nd.html

Some Reinforcement Learning Terminology
agent

motor torques
actions

function

rewards
how did it do?

observations
(states)

joint angles
acceleration
veloCity
camerao. vision
etc.

environment

4\ MathWorks

12

Learning the Optimal Policy

agent

Policy
function that maps

observations to actions |
function

Reinforcement Learning
Algorithm

reinforcement
optimization method used to learning

find the optimal policy that algorithm
maximizes accumulative
long-term reward

4\ MathWorks

actions

rewaords

observations

13

4\ MathWorks

Reinforcement Learning Workflow

environment reward policy training deploy

3 %K

14

Reinforcement Learning Workflow

environment

4\ MathWorks

15

Environment

= Everything outside of an agent

actions

rewards

%

observations

envirenmen

environment

4\ MathWorks

16

Environment

Everything outside of an agent

Ur1 ---URN
Ur1 ---Upn

actions

: rewards

observations

X} Y; Z; l/)) 0; (,b
qr1 - RN

di1 - qdLn
+ derivatives

Fp, F

environment

‘ MathWorks

17

Real vs Simulated Environments

real
agent environment
actions S ’r A
¢ rewards
observations (b
)
()
© Accuracy
® Risk

4\ MathWorks

agent simulated

| environment
actions _

>
rewards

€

observations

© Training speed

© Flexible simulated conditions

© Safety

@ Model inaccuracies

18

Define Simulated Environment

’i rWalkingBipedRobot * - Simulink = O X
SIMULATION DEBUG MODELING FORMAT APPS ’?) LG 0
[1
{1 Open ~ 1] Stop Time | Tf \ . i & v
d\-:] E S |5} > » N : : ‘ @ QJ “[> m
ave ¥) s v - i v
New Library S Step Run Step top Data
v &9 Print ¥ Browser C H@ Fast Restart Back ¥ v Forward Inspector
FILE LIBRARY PREPARE SIMULATE REVIEW RESULTS
< riwalkingBipedRobot X Agent
® @dWalkingBipedRobot >
Q : : . Enable animation
5 Walking Robot: Reinforcement Learning (2D) ————
[ﬁ Disable animation
Copyright 2020 The MathWorks, Inc. T T
3 1
LS| 1
all
(&)
, P meas
observation observation
P prevAct action
Calculate Observation Renen
& P meas
reward reward
P prevAct
Calculate Reward
cumulative_reward » D
2o @————p meas . isdone isdone Walking Robot
(@4 Cumulative
[E] Check if Done Figped
Agent
»
Ready 117% ode23t

&\ MathWorks

Physical modeling of robot
dynamics and contact
forces using Simscape

https://www.mathworks.com/help/reinforcement-learning/ug/train-biped-robot-to-walk-using-reinforcement-learning-agents.html

19

https://www.mathworks.com/help/reinforcement-learning/ug/train-biped-robot-to-walk-using-reinforcement-learning-agents.html

Environment - Simulink

envirenment

¢ walkingRobotRL2D - Simulink

SIMULATION
Zy G 0pen ~]] Stop Time | TF ~ — e, P
= — = e lr 4 @ % W)
o &l save ~ Library signal ~ | Normal | step 5 Step Data Logic Bird's-Eye T
~ &= Print - Browser Table @ Fast Restart Back v - Forward Inspectar Analyzer Scope

FILE LIBRARY PREPARE SIMULATE REVIEW RESULTS -

walkingRobotRL2D

® 4

[*a] walkingRobotRL2D »

4
= Walking Robot: Reinforcement Learning (2D) Enable animation
= Copvright 2019 The MathWorks, Inc. Disable animation
1l
—— P meas Y
observation —— P observation
prevAct action »!inp sensors
Calculate Observation Sensors
& ——— P meas
reward P reward
prevAct
Calculate Reward
cumulative_reward ——p» D Walking Robot
&—————Pp meas isdone —— P isdone
Cumulative
- Check if Done Reward
" RL Agent

ode23t

256%

4\ MathWorks

20

Reinforcement Learning Workflow

rewaonrd

4\ MathWorks

21

4\ MathWorks

Reward p 4

A function that outputs a scalar number that represents the immediate
"goodness" of an agent being in a particular state and taking a particular
action.

agent
software actions
rewards
——ares

observations

environment

reword = function (state, action)

22

Defining the Reward

want me to go?

j“ ~—{___ this is the way you

N= v~ 3y* - 502" + 25 % - 0.0y W *

| |

minimize actuator effort

walk as long as possible

\
keep trunk at initial height

don't stray from path

forward velocity

4\ MathWorks

23

Defining the Reward

P4, riwalkingBipedRobot * - Simulink = O X
SIMULATION MODELING
| Open ~] Stop Time ‘Tf Ca = —
dubEs B q q FEm—— d @ b 2
ave w . : 1 v - i v
New Library Log AdC il Step Step Stop Data
v [Print ¥ Browser gnais Ewel H@ Fast Restart Back ¥ Forward Inspector
_FLE _LIBRARY | PREPARE SIMULATE | REVIEWRESULTS | &
: _1 riwalkingBipedRobot > Agent
® |[’a] iwalkingBipedRobot P v
Q A § . Enable animation
Walking Robot: Reinforcement Learning (2D) —————
lﬁ ; Disable animation
Copyright 2020 The MathWorks, Inc. T
=3
()
EJ =———=—=Pp meas /
observation ———— | observation
P prevAct action =
Calculate Observation semon
@——=—"P meas |
reward —- ’ Aﬂp_nt
— prevAct
Calculate Reward
cumulative_reward F——» D
— @——P meas . isdone f—— P isdone Walking Robot
(] . . Cumulative
lg_f] Check if Done Reward
Agent
»
Ready 117% ode23t

4\ MathWorks

reward

&

Reward defines task to
learn

24

&\ MathWorks

»

reward
Defi ning the Reward
ﬁ rIWalkingBipedRobot/Calculate Reward - Simulink - O X
SIMULATION MODELING
1 0Open ~] Stop Time | Tf - [-
@O - @ 5 o B8 ==l lq @ b o
ave - . Al . - - -
New Library el Add Signal Nermal ¥ Step Run Step Stop Data
~ [Print v | Browser ignals viewer Table @ Fast Restart Back = - Forward Inspector
FILE LIBRARY PREPARE SIMULATE REVIEW RESULTS a
L= 4 Calculate Reward RL Agent
® riWa\kingBipedRobot » Calcu\ate Reward v
Q
Reward function inspired by J A TS 2
E3 "Emergence of Locomotion 1 r=v.,- 3Hl - 5021 + 25— - 0.02 E LL't
Behaviours in Rich Environments” 't' X Tf -l
Google DeepMind, 2017 i
= hitps:ifarxiv.org/pdfif1707.02286.pdf Forward Reward Scaling
- minimize actuator effort
& walk as long as possible
0 keep trunk at initial height
P+
Deviation Penalty Scaling Y forward_raward don't stray from PQ-H-,
>+ deviat I
— eviation_penalty ; For‘qu‘d VeIOCI‘{-H
joint_penalty "1” reward
= p u+b » u?
Subtract Initial Height . _ duration_reward
Deviation Penalty Scaling Z
ﬂ Z =| 0.02
prevAct I/
Torque Penalty Scaling » D
. e | =
25" TsITE

Individual Rewards
Duration Reward

Ready 100% ode23t

25

Reinforcement Learning Workflow

policy

&\ MathWorks

26

The Agent

actions

rewards

#

observations

environment

‘ MathWorks

policy

T

27

4\ MathWorks

Learning the Optimal Policy

agent

Policy
function that maps

observations to actions |
function

Reinforcement
Learning Algorithm

reinforcement
optimization method used learning

to find the optimal policy algorithm

policy

T

actions

rewards

observations

28

4\ MathWorks

policy

Actor-Critic Methods 06k

= Two neural networks (typically) are simultaneously tuned during training:

— The actor tries to learn the best action at each state

— The critic tries to
= estimate the value of each state/state & action the actor takes
= critique/guide the actor’s choices

CRITIC

f %
state
observations

ACTOR

value the total reward an agent expects to receive from a state and onwards into the future 2

value >

ochons

4\ MathWorks

policy

Actor-Critic Training Cycle r

previous estimate of value

R(s, a) + Y-max Q'(s’,) - Qls, o)

new best estimate of value

erronr

reward

(COMPQI"G

SJ(OTL; @ /
observations
tions 7
/ ac
AN

ACTOR AN / update actor

%

30

Creating the Agent

= Constructing a DDPG (Deep Deterministic Policy Gradient) Agent
— Create the critic network
— Create the policy network
— Create the agent with actor and critic network and set hyperparameters

&\ MathWorks

policy

T

31

Creating the Agent with Reinforcement Learning Designer

668
(<]

Hi L Se 0@ e]=zzz

B & oo

8 @ & B8 @

% =Y oW seme EELY PIDZ3J| Analoglnput Analog Modbus CAM Explorer CAMFD System Wireless REE Y image Iy
e oE2c 47 BIE Recorder Output Gen.. Explorer Explorer Identification Waveform G... Acquisition
g 1] =
o E Gl | Eb Caleb r RL P hd
EREE @ [2012 BE I - EA\Caleb\RL\ TrainBipedRobotToWalkUsingReinforcementL eamingAgentsExample\ TrainBipedRobot ToWalkUsingReinforcementl eamingAgentsExample.mb x |[zer 32 @
s | TrainBipedRobotToWalkUsi cementLearningA mb | + | s 2t
ACCwithTrainedAgentRL 51 ~
g g numdbs = 29; =} actinfo Ix1 riNum,
blob_storage 5 obsInfo = rlNumericSpec([numObs 11); (= H actuatorType 1
Jayden 6 obsInfo.Mame = ‘observations’; = i blk ‘riwalking
) ,) .
roundabout- master Create the action specification, contactﬁdarnpmg . 50
roundabout- master_error contact_point_radius 1.0000e-0.
TrainBipedRobotTowalkUsingReinforcem... 7 numAct = 6; 0 ' : i contact_stiffness 500
g P . . 8 actInfo = rlNumericSpec([numAct 1], 'Lowerlimit',-1, 'UpperLimit’,1); P I doubls
¢ ACCwithTrainedAgentRL.zip z T & DT R O density 5()
i roundabout- master.zip = env Tx1 Simuli
Create the environment interface for the walking robot model. foot_density 1000
10 blk = [mdl,’/RL Agent']; foot_offset [-1.00]
11 env = rlSimulinkEnv{mdl,blk,obsInfo,actInfo); foot x 5
12 env.ResetFen = @(in) walkerResetFen(in,upper_leg length/188@,lower_leg length/108,h/188); fOOtJ 4
foot_z 1
Select and Create Agent for Training 9.8067
This example provides the option to train the robot either using either a DDPG or TD3 agent. To simulate the robot with the agent of your choice 18
set the AgentSelection flag accordingly. 0.0250
[-0.4510,0.
13 AgentSelection = 'DDPG'; ~
14 switch AgentSelection [-045100
15 case 'DDPG’ 21.0125
16 agent = createDDPGAgent(numObs,obsInfo,numAct,actInfo,Ts); 1
17 case 'TD3" 5 o +
18 St = TR Ao Gure ST Tt Hjoint_limit damping 10
joint_limit_stiffness 10000
joint_stiffness 0
fe > H leftinit [0:0,-0.18C
L dRobotTe ementl A] 1 leg_radius 0.7500
H lower_leg_length 10
-l mass 0.1600
nm
000 oo oo oo -l max_torque 3
A mdl ‘riwalking
1 motion_time_constant 0.0100 ~
< >

&\ MathWorks

32

Defining the Agent

’i rIWalkingBipedRobot * - Simulink = O X
SIMULATION DEBUG MODELING FORMAT APPS s c o
| Open ~ 1] Stop Time | Tf e =
of = & > q = ‘ d @ b 2
New - e Library Log Adc SEna Step Run Step S Data
v [Print ¥ Browser gnais EWE B@ Fast Restart Back ~ v Forward Inspector
FILE LIBRARY | PREPARE SIMULATE REVIEW RESULTS Iy
< riwalkingBipedRobot Agent
© | [Pa)riwalkingBipedRobot b v
Q 2 g f Enable animation
Walking Robot: Reinforcement Learning (2D) —_—————
[ﬁ Disable animation
Copyright 2020 The MathWorks, Inc. T e
=%
LE| 1
z
&=
[:J P meas
observation ——— —»{ observation
¢ PiprevAct action —
Calculate Observation ROR
== meas
© ' reward —— P reward Agent
— prevAct
Calculate Reward
cumulative_reward F— —» D
a meas . isdone f—— —P{ isdone Walking Robot
(@4 b Cumulative
@ Check if Done Rwped
Agent
»
Ready 117% ode23t

policy

T

Define the agent

4\ MathWorks

36

Reinforcement Learning Workflow

training

O

&\ MathWorks

37

Training Our Deep Reinforcement Learning Agent &

worker | Accelerate training by running simulations in parallel on

[._,.j multicore computers, clusters or the cloud

K :
— client
[. E .i) r envi ronmenﬂ
(l:@ . -

wOr'ker‘N Train with the GPU when using

[.:.i) Deep Neural Networks for Actor

or Critic representations

4\ MathWorks

38

&\ MathWorks

raining the Agent

TRAIN SIMULATE DDPG AGEMT

A
B o e B
Import View View Train Simulate Export
=4 Actor Model Critic Model 4
NAME | IMPORT REPRESENTATION NEXT STEPS
" Agents w agentDDPG
agentDDPG Observation Specification Action Specification

REINFORCEMENT LEARNI

2gentDDRG

gl

Observation Name Domain Dimension Data Type Action Name Domain Dimension Data Type

observations continuous [291] double + | |foot_torque continuous 61] double =

~ Hyperparameters

Agent Options Actor Options Critic Options

Sample time 0.025 Learn rate 0.0001 Leamn rate 0.001

Environments

env Discount factor 0.99 Gradient threshold 1 Gradient threshold 1
Execution environment (JCPU (8)GPU
Experience buffer length
~ More Options ~ More Options » More Options
[|Reset bufier [| Save buffer Optimizer |adam v |
Target smooth factor o001 D i offset 1e-08
Results
Target update frequency 1 Gradient decay
Squared gradient decay 0.999
Gradient threshold method | 12norm v |
L2 regularization 0.0001
~ Exploration
Preview Ornstein Uhlenbeck Noise Options Ornstein Uhlenbeck Noise
Standard devition | o f ‘ ‘ [
i bl Nt A |
Mean [9 A o « "
= frk'Nh‘\‘ h'\r’”'ﬂ h,\'qr\ i \“"i \rY| A | ,j‘l/ ol A Y. M I‘JV! |: ”LH
» More Options = [Wl B WPV A] A ¥
W y | 4/ vy f\j 1"
v v WV
V /
Plot Options . | I | | | | | | L]
X-axis limit 1000 0 100 200 300 400 3?225 600 700 800 9200 1000
14 [l Agent opened: "ageniDDPG"

40

esting the Age

REINFORCEMENT LEARNIN

TRAIN SIMULATE

Environment| env

Agent| agentDDPG -

Nt

DDPG

ENT

Number of Episodes| 10 F
=) Max Episode Length | 400 uuuu [>
| C——— o | e | smokee

[] Stop on Emor Parallel * -
SYSTEM SIMULATION OPTIONS | SIMULATE
" Agents agentDDPG
ageniDDPG
agentDDPG_Trained ~ Overview

Environments
env

Results
experiencel
trainStats1

Preview

The DDPG algorithm is an actor-critic reinfercement leaming methed which computes an optimal policy that maximizes the long-term reward.

| Learn maore |

Observation.Specifi Action Specification

Observation Name Domain Dimension Data Type Action Name Domain Dimension

observations confinuous 291 double | |fool_torque continuous [61]

~ Hyperparameters

Agent Options Actor Options Critic Options
Sample time E Leam rate Leam rate @I
Discount factor 099 Gradient threshold ’—T‘ Gradient threshold :l
Execution environment GPU
Batch size 128
Experience buffer length ﬂl
~ More Options ~ More Options » More Options
|| Reset bufier [| Save buffer Optimizer |adam

Denominator offset

Target smooth factor 0.001
Target update frequency 1 Gradient decay

Squared gradient decay 0.999

Gradient threshold method | 12norm v |

L2 regularization 0.0001

~ Exploration

Ornstein Uhlenbeck Noise Options Ornstein Uhlenbeck Noise

Data Type

double

2
Standard deviation 03 ‘
1
= - ﬁ,ﬂy \ ﬂ[h hn i P WM
+ More Opt = A Vi Il [vy
: Ul W™

]

&\ MathWorks

42

4\ MathWorks

Reinforcement Learning Workflow) & Bmemd N
environment reward policy training deploy

3 % K

reward shaping

43

Reward Function Design Matters

| want my robot to walk forward. Let’s set the reward to be the robot’s forward velocity.

4\ MathWorks

44

| ‘MathWorkS“'

Reward Shaping to Improve Learning T T

Let’s add a reward term for each time step it remains upright and a penalty for not maintaining a torso height

45

Reward Shaping to Improve Learning

Let’s add a penalty for the energy used for actuation

‘ MathWorks

46

Reward Shaping to Improve Learning

Let’s add a penalty for deviating from the line

‘ MathWorks

47

Reinforcement Learning Workflow

4\ MathWorks

deplog

48

Deploy policy to the target hardware

offline simulation target hardware

environment real
model environment

R

(@D

RL

Automatically generate C/C++ or CUDA code
to run the policy on an embedded system

4\ MathWorks

deploy

we

49

Policy Deployment to Hardware Platforms

Policy

4

Intel ® is a trademark of Intel Corporation

E—

NVIDIA® and TensorRT ® are registered trademarks of NVIDIA Corporation
Arm @ is a registered trademark of Arm Limited (or its subsidiaries)

Code

Generation

Auto-generated
Code
(C/C++/CUDA)

<
0066

\?ib

QA

@?‘

GPU Coder

e—>

&\ MathWorks

deplog

T

Intel

MKL-DNN
Library
NVIDIA

| @ TensorRT &
[E; CuDNN

Libraries

Arm
Compute

Library

50

&\ MathWorks

Key takeaways

= Reinforcement Learning can solve complicated control and decision problems
« Reward Shaping can improve learning outcomes

« MATLAB and Simulink provide a complete workflow for Deep
Reinforcement Learning

51

