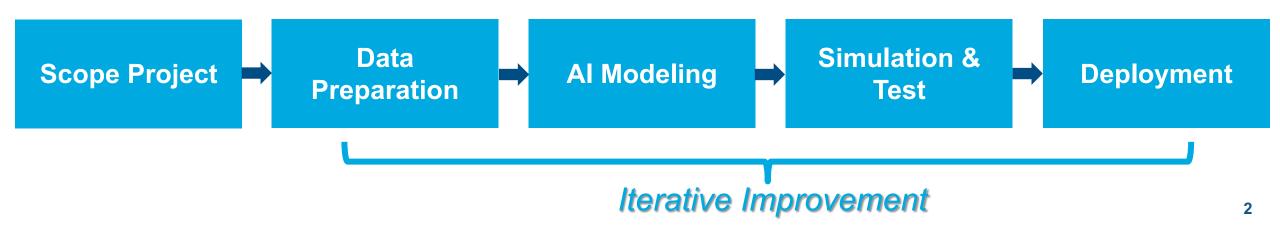


세션1. 영상 분석을 위한 딥러닝 MATLAB과 함께하는 딥러닝 4주 완성 부트캠프

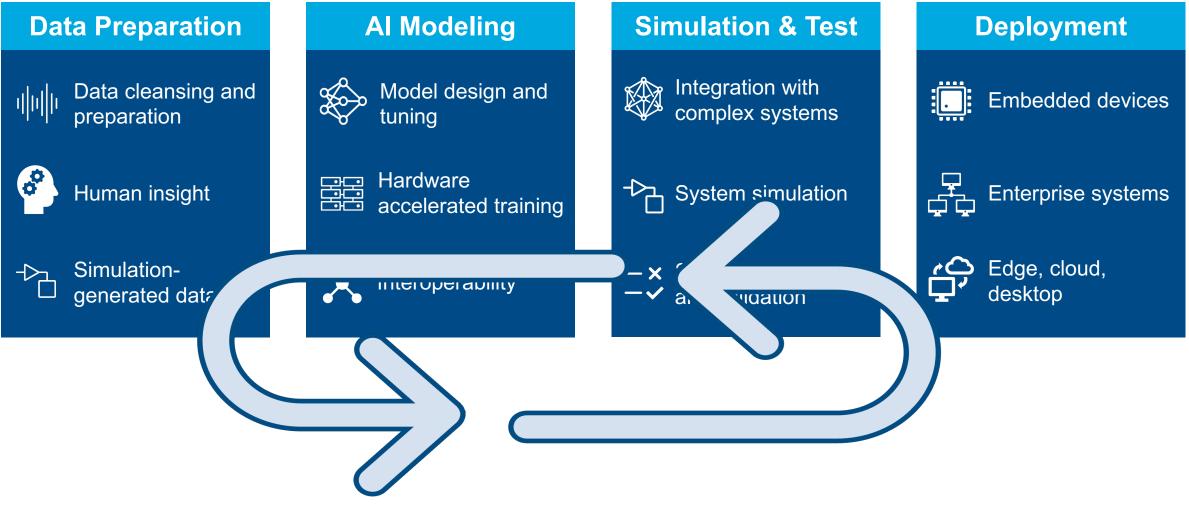
송완빈 과장 Application Engineer @ MathWorks <u>wsong@mathworks.com</u>

Accelerating the pace of engineering and science

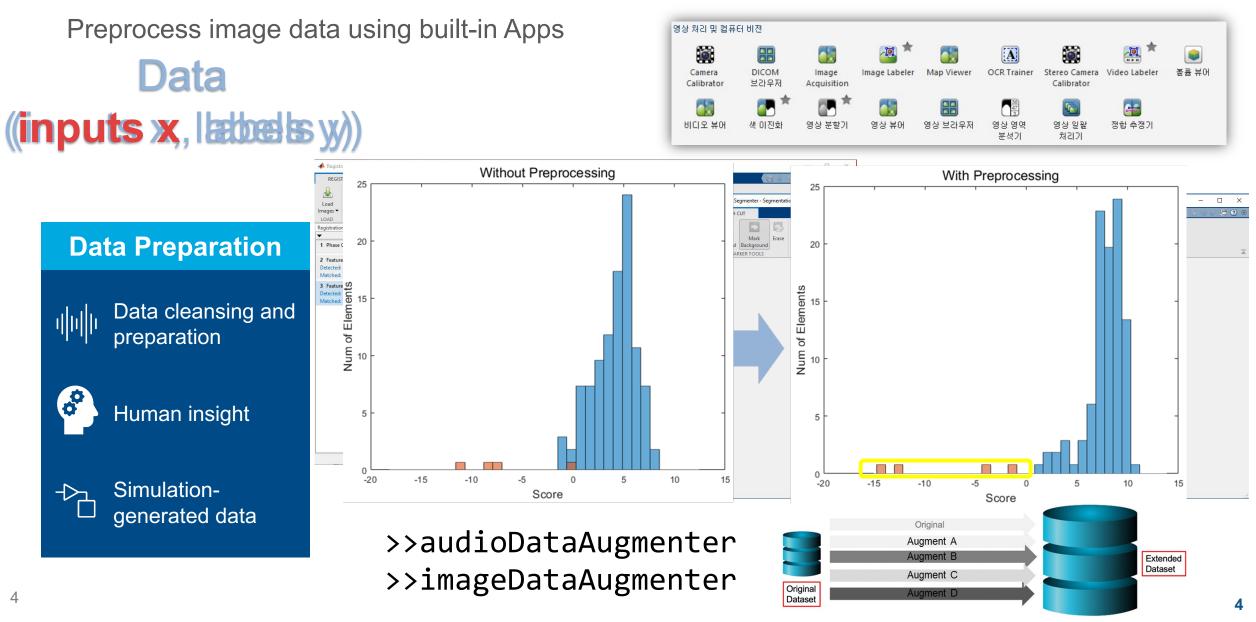


Software System Design

Traditional Software



 Al Software = Code + Data (Model/Algorithm)


Al-driven system design

Iterative refinement for system improvement

Spend less time preprocessing and labeling data

Spend less time preprocessing and labeling data

Automate labeling of Lidar, image, video, and signal.

A Image Labeler

Data LARE New Sessi 🔄 Open Sessi View Save Session -(inputs x, labels y) LABEL OPACIT 1 ROI Labels boatsPlane 15 16 Attribute Label + Boats 0 ▶ Airplane 0 ▶ Sky 8 ▶ Ocean Set Bdoc as do abel Opacit **Data Preparation ROILabels** Scene Label Amphutes and Sublaheb 📣 Lidar Labeler Persor carryingObject . Data cleansing and Shrink To Fit Snap to Cluster IIIII 0 Foliage Hide Groups Auto Alion Cluster Settings Colormap Value Z Height 00 Furniture Ground Setting preparation GROUND **ROI Labels** vehicle 0 ▶ car Human insight bike - None pole 0 vegeta. Simulation- $- \sum$ generated data 00.00000

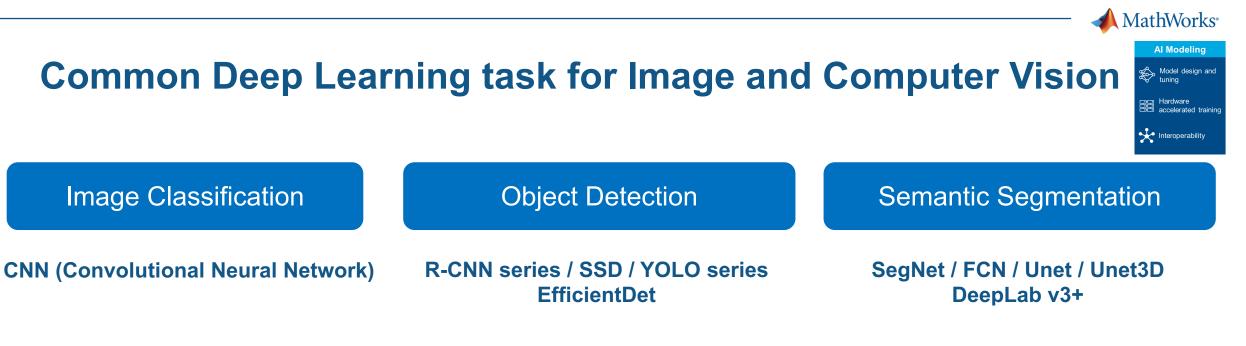
7월 21일 딥러닝 프로젝트를 위한 데이터 준비 기법

MathWorks[®]

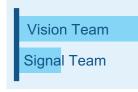
https://bit.ly/3y6CWUD

Projected View

HHAM


May Time

-×


0 - Q Q ()

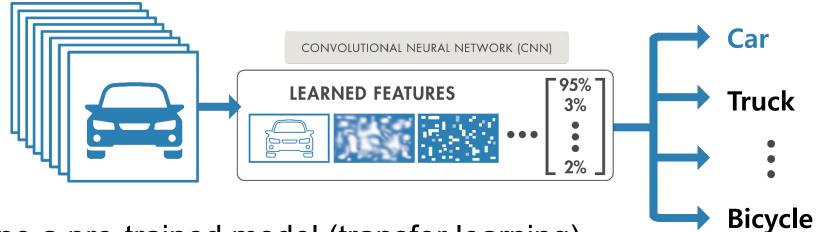
o Direction

+x *

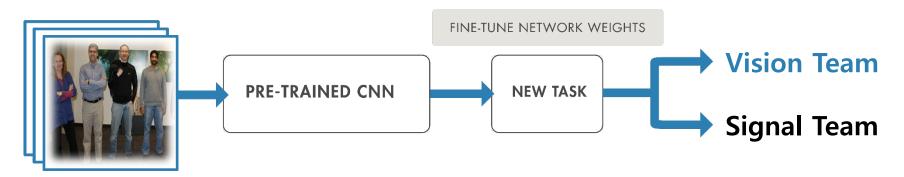
Class Probability

ſ	labels ×		1	bboxes 🛛			
	7x1 categorical		Ħ	7x4 single			
	1	2		1	2	3	4
1	book	^	1	591.5063	241.6070	55.6816	45.1555
2	person		2	28.4991	47.9548	136.4793	368.6172
3	person		3	157.1649	34.2897	101.9945	375.7617
4	person		4	261.3463	39. 1 634	123.7739	345.2696
5	person		5	387.9937	49.0971	111.1555	328.0656
6	person		6	506.0469	51.2442	140.1493	351.3738
7	person		7	655.6837	49.0147	134.4519	367.1317

Bounding Boxes


background background person

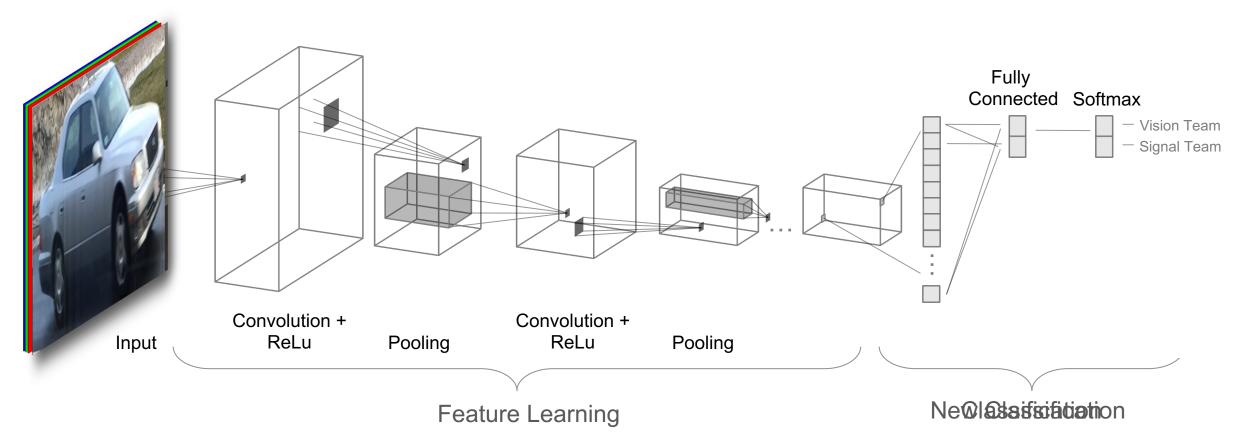
background	background	person
background	person	person
background	person	person
background	person	person
	background background	background person background person


Categorical Image 6

Two Common Approach for Image classification

- Train a deep neural network from scratch

Fine-tune a pre-trained model (transfer learning)



MathWorks[®]

Image Classification

Fine-tune a pre-trained model (Transfer learning) Image Classification

Reuse feature extraction layers and replace classification layers

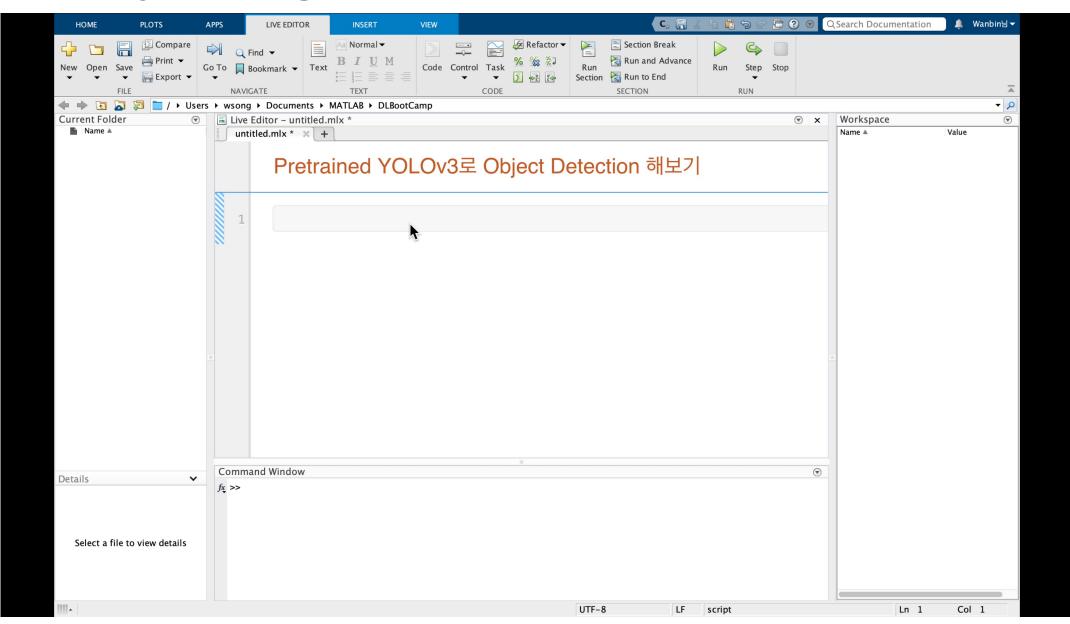
MathWorks

Leverage apps for improving your transfer learning model

📫 MA	ATLAB	창	도움말										۵	*	(((ا	교 ⊙	A	100% 🛃	a	Q	🔒 6월 3	0일 (수) 의	2후 4:09
											MATLAB R20)21a											
HOME		PLOT	S	APPS										C ,	16 ¹ 19	696	20(? 🖲 🤇	QSearch	n Docum	nentation		Wanbin님 -
	New	New FILE		G Find		lmport Data		B New Va D Open V D Clear W ARIABLE	ariable 🔻	Favorites	Analyze Code	s 👻	•	 Prefer Set Pa Paralle ENVIRON 	ith el ▼	Add-Ons	? Help ▼	A Com Requ Lear RESOUR	uest Supp n MATLA				Ā
4 🕹 🖪			/ + 1	Users 🕨	wsong	g ► Doo		MATLAB +	DLBootCarr	np ▶ Trans													- P
Current Fo	older						d Window											(J W	/orkspa	ce		
Name flowe flowe	er_photo		:	Git · O	<u>A</u>	>>>			*										Na	ame ▲		Value	
Selec	ect a file	to vie	w detai	ils																			

Object Detection in Image/Vision System

MathWorks[®]



Object detection

 Computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos

Detect object using pretrained YOLOv3

Speed up development using pretrained detector networks.

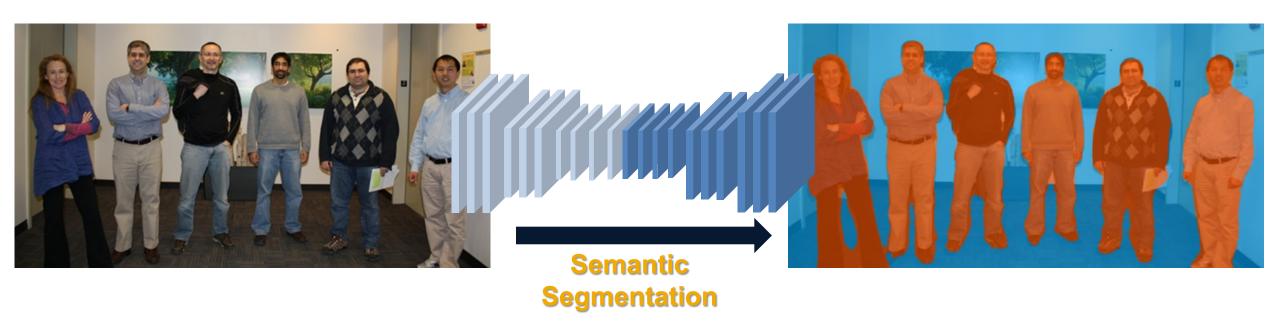
Use MATLAB high-level API for changing network type, backbone network for better performance easily.

Variables - newGTruth.DataSource 🕤 🗙 newGTruth.DataSource newGTruth.LabelData newGTruth newGTruth.DataSource newGTruth.LabelData 2 3 4 Mask 1 ing\COVID_Project\mask\TMWK_dataset\mw_bk1.jpg [384,1704,1019,866] 2 ing\COVID_Project\mask\TMWK_dataset\mw_bk2.jpg 2 [412,1529,1148,827] 3 ing\COVID_Project\mask\TMWK_dataset\mw_bk3.jpg [479,1670,1111,878] 3 4 ing\COVID_Project\mask\TMWK_dataset\mw_brian1.JPG [797,2173,1580,1290] 4 5 ing\COVID_Project\mask\TMWK_dataset\mw_brian2.JPG [847,2277,1521,1158] 5 6 ing\COVID_Project\mask\TMWK_dataset\mw_brian3.JPG [737,2269,1694,1351] 6 7 ing\COVID_Project\mask\TMWK_dataset\mw_caleb1.jpg [785,1592,1102,1018] 8 ing\COVID_Project\mask\TMWK_dataset\mw_caleb2.jpg [864,1712,940,833] 8 9 ing\COVID_Project\mask\TMWK_dataset\mw_caleb3.jpg 9 [887,1573,838,778] 10 ing\COVID Project\mask\TMWK dataset\mw dennis1.jpg [416,1452,1107,1032] 10 11 ing\COVID_Project\mask\TMWK_dataset\mw_dennis2.jpg 11 [407,1477,1135,931] 12 ing\COVID_Project\mask\TMWK_dataset\mw_dennis3.jpg [367,1394,1135,968] 12 13 ing\COVID_Project\mask\TMWK_dataset\mw_dy1.jpg [119,631,505,349] 13 14 ing\COVID_Project\mask\TMWK_dataset\mw_dy2.jpg 14 [121,629,503,372] 15 ing\COVID_Project\mask\TMWK_dataset\mw_gary1.jpg 15 [175,464,391,317] 16 ing\COVID_Project\mask\TMWK_dataset\mw_gary2.jpg [219,401,338,289] 16 17 ing\COVID_Project\mask\TMWK_dataset\mw_hj1.jpg [118,310,232,161] 17 18 ing\COVID_Project\mask\TMWK_dataset\mw_hj2.jpg [124,316,213,163] 18 19 ing\COVID_Project\mask\TMWK_dataset\mw_hj3.jpg [81,315,250,166] 19 20 ing\COVID Project\mask\TMWK dataset\mw hj4.JPG 20 [72,399,364,255] 21 ing\COVID_Project\mask\TMWK_dataset\mw_hj5.JPG 21 [83,410,316,238] 22 ing\COVID_Project\mask\TMWK_dataset\mw_howard1.jpg 22 [243,218,163,126] 22 ina/COVID Project/mack/TM/WK dataset/mw howard2 ina

Transfer Learning using YOLOv4 pretrained model (https://bit.ly/2Uj <u>7AeP</u>)

지능형 영상 분석을 위한 딥러닝 기반 객체 탐지 알고리즘 이해하기 April. 29th, 2020

송완빈 과장 Wanbin Song Application Engineer @ MathWorks wsong@mathworks.com

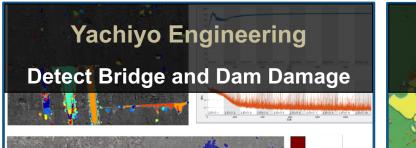

or YouTube Live Webinar

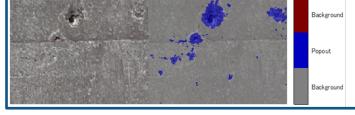
A MathWorks

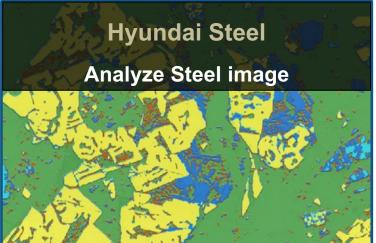
What is Semantic Segmentation?

Semantic Segmentation

- Semantic Segmentation
 - Associate pixels in an image, video or point cloud to class labels (semantic segmentation) or instances (instance segmentation).

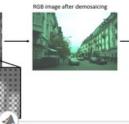

Classify each pixels using pretrained DeepLab v3+ network


	🗯 Safari 파일 편집 보기	방문 기록 책갈피 윈도우	도움말	8	1 *	(1)) □ ⊙ A	99% 💋 🔶	Q 🛢	6월 30일 ((수) 오후 3:16
Cooperation in Presing Lucky Cooperation in Presing Lucky	••• • • >	G D		www.google.co.kr		یک (ٹ) ٹ			ſ) + C
Q Qogle Search Ym Feeling Lucky Gogle offered in: 반국어			Google Naver Daum Netflix Wavve		MathWorks Inside	GitLab				
South Korea	Quality Manual		Q Google Se	arch I'm Feeling Lucky			k	Gmail	Images	
	Guur Korea									



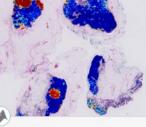
MATLAB users solve a diverse set of engineering problems using same semantic segmentation technique

Extensive Examples for Deep Learning Use Cases



Cumulative Score Distribut

Remove Noise from Color Image Using Pretrained Neural Network


Remove Gaussian noise from an RGB image by using a pretrained denoising neural network on each color channel independently. Quantify Image Quality Using Neural Image Assessment

Analyze the aesthetic quality of images using a Neural Image Assessment (NIMA) convolutional neural network (CNN).

Develop Raw Camera Processing Pipeline Using Deep Learning

Use a U-Net network to approximate a typical pipeline of image processing operations that convert raw camera data to an aesthetically

Classify Large Multiresolution Images Using blockedImage and...

Classify multiresolution whole slide images (WSIs) that do not fit in memory using an Inception-v3 deep neural network.

Automate Ground Truth Labeling for Semantic Segmentation

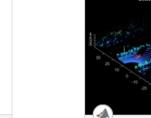
Semantic Segmentation

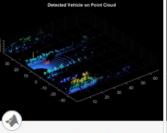
Train a semantic segmentation

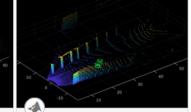
network using deep learning.

Using Deep Learning

Use a pretrained semantic segmentation algorithm to segment the sky and road in an image, and use this algorithm to automate

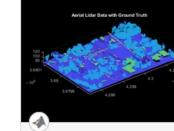

Object Detection Using YOLO v3 Deep Learning


Detect objects using you look only once version 3 network.



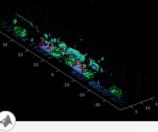
Estimate Body Pose Using Deep Learning

Estimate the body pose of one or more people using the OpenPose algorithm.



Automate Ground TruthDataLabeling For VehicleLidaDetection Using PointPillarsDee

Automate vehicle detections in a point cloud using a pretrained PointPillars object detection network in the Lidar Labeler app. In this


Data Augmentations for Lidar Object Detection Using Deep Learning

Perform typical data augmentation techniques used in 3-D object detection workflows with lidar data.

Terrain Classification for Aerial Lidar Data

Segment and classify terrain in aerial lidar data as ground, building, and vegetation. The example uses a LAZ file captured by an airborne lidar

Lidar 3-D Object Detection Using PointPillars Deep Learning

Train a PointPillars network for object detection in point clouds.

Image Processing

Computer Vision

MathWorks: helping engineers & scientists build Deep Learning solutions

The Platform

MATLAB, Simulink, and over 100 add-on products for specialized applications

Your People

Helping you build an agile workforce today and preparing tomorrow's engineers

Our Expertise

From onboarding and implementation to solving advanced engineering challenges

<u>https://bit.ly/3hfSm24</u> 오늘 등록하세요!

답러닝 부트캠프 응용편 집러닝 기반 레이다 및 러이다 및 우선통신을 바이오, 의료분야를 위한 딥러닝

감사합니다