
Explore Spring Mass Damper equations of motion:

From our year 1 class in physics and mechanics, we derived using Newton's 2nd law, the equation of
motion for the dynamics of a Spring Mass damper system. Recall that it had the following form:

Today we'll use the Lagrange approach to derive the same equations of motion for our spring mass
damper. Recall our earlier class where we derived and summarised the Lagrangian equations:

 where

where:

• L : is the system Lagrangian, ie: L = KE - PE
•  : is the  generalised co-ordinate

•  : is the generalised force associated with the  generalised co-ordinate

•  : is the number of active NON conservative forces

•  : is the number of active NON conservative TORQUES

•  : is the velocity vector of the point associated with the applied force.

•
 : is the angular velocity about the point associated with the applied torque.
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STEP_1: Define Model parameters

Define some Symbolic variables that parameterise our model:

syms  m  k  b  F

And here are some variables associatd with our ,  and

syms          t       x(t) 



syms              THE_X    THE_XD      THE_XDD
HOLDER_list = [   THE_X,   THE_XD,     THE_XDD];
actual_list = [       x,   diff(x,t),  diff(x,t,2)];

STEP_2: Understanding of governing physics

v  = diff(x,t);  % velocity
KE = 0.5*m*v^2;  % KINETIC energy
PE = 0.5*k*x^2;  % POTENTIAL energy
L  = KE - PE     % our Lagrangian

L(t) = 

STEP_3a: Apply Lagrange's equation - PART 1 of 3

Now let's start applying Lagranges equation  :

                   % OLD_LIST       NEW_LIST
L_new   = subs(L, actual_list,   HOLDER_list);

Our 1st piece is:

dLdx    = diff(L_new, THE_X);

Our 2nd piece is:

dLdxdot =  diff(L_new, THE_XD);

Our 3rd piece is:

                                % OLD_LIST      NEW_LIST
dLdxdot       =  subs(dLdxdot, HOLDER_list,  actual_list );
dt_of_dLdxdot = diff(dLdxdot, t);

Now put it all together:

our_EOM_LHS = dt_of_dLdxdot - dLdx;
our_EOM_LHS =  subs(our_EOM_LHS, HOLDER_list, actual_list )

our_EOM_LHS(t) = 



STEP_3b: Apply Lagrange's equation - PART 2 of 3

Now calculate the generalised force Q :

Define Forces and velocities:

Fv_mat = [  F,  (-b*THE_XD),   THE_XD,   THE_XD; 
            0,            0,        0,        0;
            0,            0,        0,        0;
        ];    
F_mat = Fv_mat(:,1:2);
v_mat = Fv_mat(:,3:4);

Calculate the GENERALISED forces :

Q     = 0;
for zz=1:2
    F_vec = F_mat(:,zz);
    v_vec = v_mat(:,zz);
    
    dvdq  = diff(v_vec, THE_XD);    
    Q     = Q + sum( F_vec .* dvdq);
end
 
our_EOM_RHS = Q;

STEP_3c: Apply Lagrange's equation - PART 3 of 3

Now put it all together:

our_EOM     = (our_EOM_LHS == our_EOM_RHS);
our_EOM     =  subs(our_EOM, HOLDER_list, actual_list )

our_EOM(t) = 

STEP_4: Isolate the term of interest

In addition to solving for , we'll show the resulting expression using the "alternate" symbol list:



                                        % OLD_LIST      NEW_LIST
our_EOM                =  subs(our_EOM, actual_list,  HOLDER_list);

Come on ... what's  ?

the_expression_for_XDD = solve(our_EOM, THE_XDD)

the_expression_for_XDD = 

STEP_5: Convert symbolic expression into a block diagram model

MODEL_NAME        = 'SIM_SMD_WILL_BE_DELETED';
close_system(MODEL_NAME,0);   new_system(MODEL_NAME);
 open_system(MODEL_NAME)

Automatically convert our  expression into s Simulink block:

matlabFunctionBlock( [MODEL_NAME,'/THE_X_DD_SYS'], the_expression_for_XDD, ...
                         'Vars',     {F, m,b,k,THE_X,THE_XD}, ...
                         'Outputs',  {'X_DOT_DOT'}   ); 

STEP_6: Simulate model

Let's use the model that we just derived, and implement it in Simulink - where we'll numerically solve it.
The parameters that we'll use for this Numerical simulation are:

with

Have a look at our Simulink model .... and NOTE how we use the integrator blocks to

integrate:

open_system('bh_a_spring_mass_model')  



How does this help me make a Robot write Hello ?

So IFFFF we understand the system physics we can scale this Computational thinking approach to
bigger and more interesting systems .... like 4-LINK robotic manipulators. Capabilities that allow us to
scale, include:

• diff()
• matlabFunctionBlock()

And these partner with the capabilities that allow us to explore and design:

• Simulink
• Apps for Control system design


