
Explore Spring Mass Damper equations of motion:

From our year 1 class in physics and mechanics, we derived using Newton's 2nd law, the equation of
motion for the dynamics of a Spring Mass damper system. Recall that it had the following form:

Today we'll use the Lagrange approach to derive the same equations of motion for our spring mass
damper. Recall our earlier class where we derived and summarised the Lagrangian equations:

 where

where:

• L : is the system Lagrangian, ie: L = KE - PE
• : is the generalised co-ordinate

• : is the generalised force associated with the generalised co-ordinate

• : is the number of active NON conservative forces

• : is the number of active NON conservative TORQUES

• : is the velocity vector of the point associated with the applied force.

•
 : is the angular velocity about the point associated with the applied torque.

Bradley Horton : 13-Sep-2016, bradley.horton@mathworks.com.au

STEP_1: Define Model parameters

Define some Symbolic variables that parameterise our model:

syms m k b F

And here are some variables associatd with our , and

syms t x(t)

syms THE_X THE_XD THE_XDD
HOLDER_list = [THE_X, THE_XD, THE_XDD];
actual_list = [x, diff(x,t), diff(x,t,2)];

STEP_2: Understanding of governing physics

v = diff(x,t); % velocity
KE = 0.5*m*v^2; % KINETIC energy
PE = 0.5*k*x^2; % POTENTIAL energy
L = KE - PE % our Lagrangian

L(t) =

STEP_3a: Apply Lagrange's equation - PART 1 of 3

Now let's start applying Lagranges equation :

 % OLD_LIST NEW_LIST
L_new = subs(L, actual_list, HOLDER_list);

Our 1st piece is:

dLdx = diff(L_new, THE_X);

Our 2nd piece is:

dLdxdot = diff(L_new, THE_XD);

Our 3rd piece is:

 % OLD_LIST NEW_LIST
dLdxdot = subs(dLdxdot, HOLDER_list, actual_list);
dt_of_dLdxdot = diff(dLdxdot, t);

Now put it all together:

our_EOM_LHS = dt_of_dLdxdot - dLdx;
our_EOM_LHS = subs(our_EOM_LHS, HOLDER_list, actual_list)

our_EOM_LHS(t) =

STEP_3b: Apply Lagrange's equation - PART 2 of 3

Now calculate the generalised force Q :

Define Forces and velocities:

Fv_mat = [F, (-b*THE_XD), THE_XD, THE_XD;
 0, 0, 0, 0;
 0, 0, 0, 0;
];
F_mat = Fv_mat(:,1:2);
v_mat = Fv_mat(:,3:4);

Calculate the GENERALISED forces :

Q = 0;
for zz=1:2
 F_vec = F_mat(:,zz);
 v_vec = v_mat(:,zz);

 dvdq = diff(v_vec, THE_XD);
 Q = Q + sum(F_vec .* dvdq);
end

our_EOM_RHS = Q;

STEP_3c: Apply Lagrange's equation - PART 3 of 3

Now put it all together:

our_EOM = (our_EOM_LHS == our_EOM_RHS);
our_EOM = subs(our_EOM, HOLDER_list, actual_list)

our_EOM(t) =

STEP_4: Isolate the term of interest

In addition to solving for , we'll show the resulting expression using the "alternate" symbol list:

 % OLD_LIST NEW_LIST
our_EOM = subs(our_EOM, actual_list, HOLDER_list);

Come on ... what's ?

the_expression_for_XDD = solve(our_EOM, THE_XDD)

the_expression_for_XDD =

STEP_5: Convert symbolic expression into a block diagram model

MODEL_NAME = 'SIM_SMD_WILL_BE_DELETED';
close_system(MODEL_NAME,0); new_system(MODEL_NAME);
 open_system(MODEL_NAME)

Automatically convert our expression into s Simulink block:

matlabFunctionBlock([MODEL_NAME,'/THE_X_DD_SYS'], the_expression_for_XDD, ...
 'Vars', {F, m,b,k,THE_X,THE_XD}, ...
 'Outputs', {'X_DOT_DOT'});

STEP_6: Simulate model

Let's use the model that we just derived, and implement it in Simulink - where we'll numerically solve it.
The parameters that we'll use for this Numerical simulation are:

with

Have a look at our Simulink model and NOTE how we use the integrator blocks to

integrate:

open_system('bh_a_spring_mass_model')

How does this help me make a Robot write Hello ?

So IFFFF we understand the system physics we can scale this Computational thinking approach to
bigger and more interesting systems like 4-LINK robotic manipulators. Capabilities that allow us to
scale, include:

• diff()
• matlabFunctionBlock()

And these partner with the capabilities that allow us to explore and design:

• Simulink
• Apps for Control system design

