Explore Spring Mass Damper equations of motion:

m
_-l &)

F(t)
From our year 1 class in physics and mechanics, we derived using Newton's 2nd law, the equation of
motion for the dynamics of a Spring Mass damper system. Recall that it had the following form:
m.x + b.x + k.x=F(t)

Today we'll use the Lagrange approach to derive the same equations of motion for our spring mass
damper. Recall our earlier class where we derived and summarised the Lagrangian equations:

- —
d oL _ oL Ne | 7 0V, Ny (2 0w,
498 _ 0L - g, whereq, =" | FL 2V |+ e e 24

where:

e L :isthe system Lagrangian, ie: L = KE - PE

* g, ‘isthe k" generalised co-ordinate

* @, ‘isthe generalised force associated with the k¢ generalised co-ordinate g,
* Nf, :isthe number of active NON conservative forces

* Nrt, :isthe number of active NON conservative TORQUES

T/I, . is the velocity vector of the point associated with the applied force.

Zi . is the angular velocity about the point associated with the applied torque.

Bradl ey Horton : 13-Sep-2016, bradl ey. hort on@mt hwor ks. com au

STEP_1: Define Model parameters

N

N
i b

m
~I &)

F(t)

~
%
WA
/

Define some Symbolic variables that parameterise our model:
syms m k b F

And here are some variables associatd with our x(¢), %(t) andx(t)

syms t x(t)

syms THE X THE XD THE_XDD
HOLDER list = [THE X, THE XD, THE_XDDI;
actual list = [x, diff(x,t), diff(x,t,2)]1;

COTTTIIT

Interesting ‘

STEP_2: Understanding of governing physics\Lt/

v = diff(x,t); % velocity

KE = 0.5*m*v"2; % KINETIC energy
PE = 0.5*¥k*x"2; % POTENTIAL energy
L = KE - PE % our Lagrangian
L(t) =

Could be
Automated |

STEP_3a: Apply Lagrange's equation - PART 1 of 3*

Now let's start applying Lagranges equation doL_oL.
dt 0x 0x

% OLD LIST NEW LIST
L new = subs(L, actual list, HOLDER 1list);
Our 1st piece is: 0L
0x
dLdx = diff(L new, THE X);

Our 2nd piece is: 0L
0x

dLdxdot = diff(L new, THE XD);

Our 3rd piece is: 4 9L
dt 0x

% OLD LIST NEW LIST
subs(dLdxdot, HOLDER list, actual list);
diff(dLdxdot, t);

dLdxdot
dt of dLdxdot

Now put it all together:ia_L _oL
dt 0x 0x

our EOM LHS
our EOM LHS

dt of dLdxdot - dLdx;
subs(our EOM LHS, HOLDER list, actual list)

our EOM LHS(t) =

M x(¢) + kx(t)

‘/ Could be

STEP_3b: Apply Lagrange's equation - PART 2 of 3 2utomated

Now calculate the generalised force Q :

Ne (o, 2 Nt,. —

_)
Q=2 [F 2|+ > 7. 2%
i=1 0q j=1 aq,

Define Forces and velocities:

Fv mat = [F, (-b*THE XD), THE XD, THE XD;

0, 0, 0, 0;
0, 0, 0, 0;
I;
F mat = Fv mat(:,1:2);
v_mat = Fv mat(:,3:4);

Calculate the GENERALISED forces @, :

Q = 0;
for zz=1:2

F vec = F mat(:,zz);

v_vec = v_mat(:,zz);

dvdq = diff(v_vec, THE XD);

Q = Q + sum(F vec .* dvdq);
end

our EOM RHS = Q;

STEP_3c: Apply Lagrange's equation - PART 3 of 3

Now put it all together: 4 9L _ 0L _
P J dt 0x 0x Q

our EOM = (our EOM LHS == our EOM RHS);
our EOM = subs(our EOM, HOLDER list, actual list)
our EOM(t) =
0? d
m— x(t)+kx(t) =F-b—x(t
& x(e) +kex(e) = F -5 2 x(e)

STEP_4: Isolate the term of interestx

In addition to solving for x, we'll show the resulting expression using the "alternate” symbol list:

% OLD_LIST NEW_LIST

our EOM subs(our EOM, actual list, HOLDER list);

Come on ... what's x ?

the _expression for XDD

solve(our_ EOM, THE_XDD)

the expression for XDD =

_ THE,, b - F + THE k
m

STEP_5: Convert symbolic expression into a block diagram model

function X_DOT_DOT = THE_X_DD_S¥S(F,m,b, k, THE_X, THE_XD)

>> the_expression_for XDD scodeger
the_expression_for XDD = This function wa rated by the Symbolic Math [>

-(THE_XD*b - F + THE_X*k)/m THE_X_DD_SYS

X_DOT_DOT = -(-F+THE_XD.*b+THE_X.*k) ./m;

THE_X_DD_SYS

MODEL_NAME = 'SIM SMD WILL BE DELETED';
close system(MODEL NAME,OQ); new system(MODEL NAME) ;
open_system(MODEL NAME)

Automatically convert our x expression into s Simulink block:

matlabFunctionBlock([MODEL NAME,'/THE X DD SYS'], the expression for XDD,
'Vars', {F, m,b,k, THE X, THE XD},
'Outputs', {'X DOT DOT'});

STEP_6: Simulate model

Let's use the model that we just derived, and implement it in Simulink - where we'll numerically solve it.
The parameters that we'll use for this Numerical simulation are:

X(t) + 4.%(t) + 100.x(t) = 200.u(t - 5)

... * x(0)=5
anh. %(0) = 0
Have a look at our Simulink model and NOTE how we use the integrator blocks to

imwmee!:aXeleX

N N

open_system('bh a spring mass model')

L DR_a_sorey mans prosdel

:w i bh_n_spring_mass_model ’d{

THE_X_DD_S¥5 ‘l
- \’—‘

£ ¥_DOT_DOT
THE_X_DO_5Y5

— 000y

ANP

VEL

POS

¥y P §

odeds

How does this help me make a Robot write Hello ?

So IFFFF we understand the system physics we can scale this Computational thinking approach to
bigger and more interesting systems like 4-LINK robotic manipulators. Capabilities that allow us to

scale, include:
e diff()
 mat | abFuncti onBl ock()
And these partner with the capabilities that allow us to explore and design:

e Simulink
e Apps for Control system design

