THE UNIVERSITY

. OF ARIZONA

Hands-On Learning with the Low-
Cost Bi-Copter: From Fundamentals
to Advanced Controls

Prof. Eniko T. Enikov,

University of Arizona Dr. Melda Ulusoy, MathWorks

MATLAB BXIPPO

Motivation and Background: Low-cost hardware, allowing
classical and advanced control experiments

Bi-Copter with Bi-Copter with
Aeropendulum _
2011 PIC16F690 Arduino Nano
(USB cable) 2020 2024
(USB cable) (wireless) MATLAB EXPO

This presentation focuses on the following topics

Root Locus

Slmf:lated Respctnse Con@h E] @A E G}

s P ;

. “0 {\ i éos Optimizer

M £ = e
sl V] “ £ model
06 U \(‘: “ ' 1; MPC Controller

%) 5 LS ‘;:'3"""3) : - ? ! Real Aiis 1. é
Bi-Copter Modeling and Classical Modern (MPC)
System Controller Controller

Identification Design Design

2 MATLAB BXPPO

Hardware overview

Wireless
. F,
operation f
Aﬁ
-

3 MATLAB BXPPO

The low-cost bi-copter and its features

(((')))

g~

Am—

Computer
MATLAB

H-Bridge
Driver

DC Motor x 2

(((')))

-

PWM
Modulation

Arduino Nano 33 loT

Accelerometer

Bi-Copter

Digital Twin

MATLAB EXPPO

3D printing and assembly instructions are available for the
bi-copter hardware

Assembly instructions [link]
3D printing instructions [link]

Source Files [link]

MATLAB BXPPO

https://vimeo.com/901642594?fl=pl&fe=sh
https://vimeo.com/901644283?fl=pl&fe=sh
https://github.com/eenikov/Arduino-based-bi-copter-experiments/tree/main/SolidWorksFiles

Bi-copter runs a pre-loaded Simulink controller (open- or closed-
loop) and sends/receives data to MATLAB Live Script

Simﬂylin}gpp

#4 Bicopter OpenLoop 2022 - Si

en Loop
Step 2: Run

il | Step 1: Dep|0y Live SCrlpt

Live Script

G Live Editor - C\Data\Agencies\SmallGrant\Mathwork... — O X
- 21 Controller e w | ;
= = , - M Il LIVE EDI.. INSERT VIEW
o =
1| Compare
. 0 or O |l Eew
-
L 5] | || New Open Save =3 Print NAVIGATE TEXT CODE SECTION RUN
» 7 v v v lﬁ Export ¥
Ready 56% FixedStepAuto 10 2 4 6 8 10 12 14 16 18 20 N N N N N
Time (seconds) FILE A
| FMT 12 datam | Bicopter Livemb | + |
<= IPADRR = '192.168.11.46" a
Simulink Closed-Loop y . e
Y R Y T Task 3: Open Loop Test
A Ia) | (ETRYAN| Il)
01 .‘{‘| |H‘ n ‘I\'ﬂ‘“ ‘I‘I ‘|“|‘ l‘ "u‘l ‘|‘|‘ ‘|‘ JI'\ |, ‘,‘“l‘ To carry ot the open-loop test, disconnect the Y
/ Voqa) ! il . .
el sl VAL W UL VYUY USB cable from the device, and flip the power
5 o1t || v | Wov
1 v ’ switch to that the device green LED is on
A20 RUN ON ol . . .
A . HARDWARE | REVIEWRESULTS (battery operation). At this point the program —_
- M. have been loaded in the Adruino. -
&l
=] E g The input test data can be gererated using the
Build, Deplo;
=] asat v MATLAB funciton idinput() as follows: —
= = |
0 4 dur=2000; % number of data points
- \ 5 Input = idinput(dur, 'rbs', [® 1/38], [-7~
s 4 »
, Parameter Updates ot |
Ready 30% FixedStepAuto

Via Workspace

MATLAB BXPPO

Workflow for classical controller design

Workflow

PID and

Design of System State-Space
Experiments : identification Controller

Design

Modeling
based on

physics

Testing
controllers in
closed-loop

MATLAB BXPPO

Modeling based on physics (linear approximation)

Propeller: Jm—c%’- + bwm = Kl (1)
di .
DC Motors: La + Ri 4+ Kpwm = v, (2)
Q(5) _ K. 3)
V(s) (Ims+b)(Ls+ R) + KpKnm’
Overall Model:
@(S) Kl

Gls) = U(s) ~ (Jbs2 + cs + k)[(Ims + b)(Ls + R) + Ko]’ (4)

MATLAB BXPPO

Design of experiments are performed to collect input-
output data for system identification

u1i

y1

0.5

M0 nin ‘ Collect -
5 .
Excite response |
0 —)
-05¢f

-10

5 10 15 20 25 30
Time (seconds)

-1

Time (seconds)

MATLAB BXPPO

10

All experiments are carried out using MATLAB Live Script

interfacing with the bi-copter

System

identification

\=/ Live Editor - C:\Data\Agencies\SmallGrant\Mathworks\BiCopter\Bicopter_Live.mlx S » I
LIVE EDITOR SERT FIGURE
I |) Compare v (=] F Normal ¥ N\ @ Refactor v » é Section Break
o O H Y oA E] & = = >
New Open Save oy Print Go To Q Find Text : A Code Control Task % & wd Run Run and Advance Run
v o v v Export ¥ N ﬂ Bookmark ¥ ' v [5 &f [fo Section E,; Run to End
FILE NAVIGATE TEXT CODE SECTION
FMT_12_data.m ASMEPAPERFig9.m Bicopter_Live.mlx untitled.mix * Report.m | untitled4 +
2 close all
3 IPADRR="'192.168.11.46"

IPADRR = '192.168.11.46"

0 N

10
11
12
13
14
15
16
17
18

Task 3: Open Loop Test

To carry ot the open-loop test, disconnect the USB cable from the device, and flip the power switch to that the device green LED is on (battery=——
have been loaded in the Adruino.

The input test data can be gererated using the MATLAB funciton idinput() as follows:

dur=2000; % number of data points
Input = idinput(dur, 'rbs', [0 1/30], [-7 7]);

This generates a binary input with a frequency bandwidth from 0 to 0.1 of the Nyquist frequency and a range from -10 to 10. Once data has been generated, run the following script to
send it to the Arduino and collect response. Make sure to keep clear from the propellers before running the following sequence!!!

tcp = tcpclient(IPADRR,25000);
%write(tcp,0,"int8");
%pause(1);
flush(tcp);
write(tcp,Input,'int8');
tic I
en = @;
while en ==
dat = read(tcp,2, 'double’);
en = dat(2);

end
D = read(tcp,2*dur, 'double’); emailarizona-my.sharepoint.com is sharing your screen and audio. Stop sharing Hide
Output = D(1:2:end): X

Zoom: 100% UTF-8 LF script Ln 7 Col 22

MATLAB BXPPO

Select most appropriate model

FIR filter

v

an
num(z)

1

- theta g

:

Simulated Response Comparison

‘ a1: 82 47%

System ID Models \ y

G1 = tfest(data,4,3,'Ts' ts) | | ' '\ NM
A | \\-’;V

Bicopter

G2=armax(data,[4 410 0]) ghi* ¥ N
G3 = n4sid(data,4) < e2f V| \/ ||
compare(data,G1,G2,G3) 2 J

. |

5 10 15 20
1 Time (seconds)

MATLAB BXPPO

PID controller is tuned using different gain cross-over
frequencies

PIDtune | Foard T G
PIDtune 12 rom: ot [

Cl=pidtune(G2,C0,1)
C2=pidtune(G2,C0,2)
C3=pidtune(G2,C0,3)
C4=pidtune(G2,C0,4)
step(feedback(C1*G2,1),...
feedback(C2*G2,1),...
feedback(C3*G2,1),...
feedback(C4*G2,1))

We=1
We=2
We=3| |
We=4

o
o

A?mplitude
B

[=
%]

=

=
ha

-] B 10 12 14 16
Time (seconds)

C2= Kp + Ki * -=-==== + Kd * —-=====
z=1 Ts*=z

with Kp = -6.79, Ki = -23.1, Kd = -0.499, Ts = 0.01 MATLAB E)m

Servo controller is designed using discrete linear
quadratic regulator method (dLQR function)

Jo

CC(z) is designed
As reduced-order
observer/controller
Using polynomial
algebra

'+ Ritdt = [x"CTCx + Rud

Plant with Integrator Added
(Known from System ID)

[[

» CC(z) — Gf =

G(z)

\

Servo Controller

13

MATLAB BXPPO

14

Optimal pole locations are obtained for various values of
the parameter R. Let's see it in practice!

PID and
State-Space

Controller
Design

=) Live Editor - C\Data\Agendies\SmallGrant\Mathworks\BiCopter\Bicopter_Live.mix

LIVE EDITOR
o M H i Compare [~ = Normal ¥ : = & Refactor ¥ L:_ =] Section Break L/
New Open Save & Print GoTo fna ¥ Tet *° Code Control Task % 8 Run ‘:9 Run and Advance Run
v g v gy Ebpon ¥ - n Bookmark ¥ v v el lle Section C‘"_g Run to End
I | NAVIGATE) TEXT __cot - SECTION
FMT_12 datam ASMEPAPERFIg9.m Bicopter_Live.mix untitled.mix * Reportm untitledd | +

Task 5: Controller Design and Implementation
After fitting a model to the bicopter /o data, we proceed with the design of a controller. Use Tune PID Controller Live Task (or iin command mqg

below)

31 Co = pid(1,1,1,'Ts",ts, 'IFormula’, 'BackwardEuler', 'DFormula’, 'BackwardEuler’');
32 C=pidtune(G,C0,1.5)
C
1s*2 1
Kp + ki * +Kd*
wud Ts*z
with Kp = -5.82, Ki = -71.5, Kd = -0.118, Ts = 0.01
Sample time: ©.01 seconds
Discrete-time PID controller in parallel form.
33 figure;step(feedback(C*G,.5))

14l
emailarizona-my.sharepoint.com is sharing your screen and audio Stop sharing Hide
-

»

Col 20

UTF-8

Zoom: 100%

LF script in 28

MATLAB BXPPO

Closed-loop testing of the servo controller

Testing

controllers in
closed-loop

" Bicopter_Closedloop_2022_SS * - Simulink academic use

SIMULATION DEBUG MODELING FORMAT HARDWARE
Hardware Board ° ﬁ ' 78|
) Hardware v || Stop Time nf Dat
Arduino Nano 33 lo1 » || Run on board oo Monitor -
i Setting &Tune v | Inspe
b UWARE E L MODE
§ <= Bicopter Bicopter_ClosedLoop_2022_SS
g © ["a Bicopter_ClosedLoop_2022_SS b
8
9
&
— -
"
H Motor A Direction
A » e
Mr B Dewcbior
Torerton

o

- P é
L d

n Status p—e

Read Catport

TCP Output

» v

Diagnostic Viewer) X
07:48AM:Buils ~ | @0 0o @3 |

mp] f =

Mod Actior Rebuild R

ter (edloop 2022 SS Code generated and nailarizona-my.sharepoint.com is sharing your screen and audi m Hide
- MATLAB BEXPPO

Ready View diagnostics 80% FixedStepAuto

Next, we will focus on MPC design and deployment

Slmf:lated Respctnse Con@h E] @A E G}

5 10 15 20

%I

2

-

=
n

Root Locus

Imaginary Axis
&
o o

-

-
o

¥

Real Axis

Reference

Plant

Plant
model

Optimizer \

MPC Controller

Bi-Copter Modeling and
System
Identification

16

Classical
Controller
Design

Modern (MPC)
Controller
Design

MATLAB BXPPO

Next, we will focus on MPC design and deployment

17

Plant
model

MPC Controller

Modern (MPC)
Controller
Design

MATLAB BXPPO

|
In addition to fundamentals, bi-copter hardware also lets
educators introduce advanced control concepts such as MPC.

Controller design and deployment
System identification

PID control Algorithm development

Mechatronics Hands-on learning
Sensors and actuators

18 MATLAB EXPO

MPC uses a dynamic model of a system to predict future behavior
and optimize control actions in real time, subject to constraints.

Cost function Constraints

Optimizer \.

Reference | \ Prediction Manipulated variables (MVs)
model)

MPC Controller

State
estimates] ,
State Estimator '

19 MATLAB BXPPO

Measured outputs (MOs)

|
Here’s the end-to-end workflow for MPC design and

deployment.

Workflow

Design of System : Testing MPC
| identification | IS C Rt | in closed-loop

20 MATLAB BXPPO

Here’s the end-to-end workflow for MPC design and
deployment.

Workflow

Design of System 3| MPC design Testing MPC

experiments identification sl in closed-loop

Input-output data Simulated Response Comparison

o
o3

Malidation data 1)
identified_model: 86%

i | TN IMEN

AN

o
2

o
B

5 10 15 20 25 30
ime (seconds g 0.2
— 2 < i ‘ |
05 Y s ™ /
) £ 1 / Optimizer
< 0 _ P
0 / A Reference
sl /) y [/ | _Reference | bo » Plant
05 . model
04+
) I i MPC Controller
Time (secon ds)
-0.6 : ‘ ‘ '
5 10 15 20
Time (seconds)

o MATLAB EXPO

An MPC is designed using the MPC Designer app to
maintain the bi-copter at the specified reference angles.

MPC design
- o e
[mubink

DEBUG MODELING FORMAS APPS

Bicopter_Closed_loop

2 =
E © |[%a|Bicopter_Closed_loop ¥ -
i o
a
=$
=]
&
O
Closed-Loop Model
Controller ‘
n ARDUINO
ARDUINO >
o~ Data u 4y ref en A"\
Q cu T theta num(z) =
L] Status »1 enf—o mo " 1 L]
mv
Read Setpoint fof Bicopter TCP Output
‘l double l
g B
@
22

MATLAB BXPPO

Testing the deployed MPC in closed-loop

Testing MPC

- = = in closed-loop

[=] CAMPC\Bi_copter_ MPC.mix * = e X
LIVE EDITOR INSERT FIGURE VIEW

q_[: e | B 5] Compare = <L ;. Norm/al'” — ; E&eman&nk l) @»
New Open Swe TIEOMTS e p, Qinds Tea B I 1 B Cote conol Tk B BE | g U RinandAdvance | g, gy sup
v - v opot v v [Bookmark v - - z Section P2) Run to End
FILE NAVIGATE TEXT CODE SECTION RUN =
2 z = “HE
Testing the designed MPC in closed-loop =)
=
For testing the designed MPC, deploy the closed-loop model to Arduino first F
66 % Generate three-level square wave reference signal 1]
67 length = 2500;
68 Ref = zeros(length,1);
69 Ref(501:1000) = -0.30;
70 Ref(1501:2000) = 0.30;
71 plot(Ref);
72 xlabel("Time [samples]™);ylabel(“Reference angle“);
03
0.2
° 0.1
[=J
(=
@
8 o
£
3
2
01
02
03
500 1000 1500 2000 2500
Time [samples]

73 % Run experiment to test the designed MPC in closed-loop

74 IPADRR = '192.168.1.27'; %typically IP address remains unchanged after deployment of closed-loop model
75 clear tcp;

76 tcp = tcpclient(IPADRR,25000);

77 write(tcp,0, 'single’);

78 pause(5);

79 flush(tcp);

20 wnital+rn Rof ‘cinmla’):

Zoom: 110% UTF-8
23

MATLAB BXPPO

24

MPC successfully compensates for the unmodeled

disturbance.

Cost function Constraints

Optimizer

Reference \ Prediction Manipulated variables (MVs)
model
MPC Controller
State
estimates :
State Estimator

N

Measured outputs (MOs)

MATLAB BXPPO

25

In summary, educators can use the bi-copter hardware to provide
students with hands-on experience across a wide range of control topics,
from fundamentals to advanced controls.

Check out these resources for more information:

= Prof. Enikov’s repository contains:

— Bi-copter 3D printing and assembly instructions
— MATLAB code and Simulink models for system
identification & PID / state-space control

= MPC with bi-copter

HANDS-ON LEARNING

— MPC code and models BI-COPTER CONTROL
USING MPC

— Tech talk video

System Identification and MPC Design using a Low-
Cost Bi-Copter Hardware

MATLAB BXPPO

https://www.mathworks.com/matlabcentral/fileexchange/169658-arduino-based-bi-copter-experiments?s_tid=srchtitle
https://www.mathworks.com/matlabcentral/fileexchange/169658-arduino-based-bi-copter-experiments?s_tid=srchtitle
https://www.mathworks.com/matlabcentral/fileexchange/169658-arduino-based-bi-copter-experiments?s_tid=srchtitle
https://www.mathworks.com/matlabcentral/fileexchange/169658-arduino-based-bi-copter-experiments?s_tid=srchtitle
https://www.mathworks.com/matlabcentral/fileexchange/182060-advanced-control-with-the-bi-copter-hardware
https://www.mathworks.com/matlabcentral/fileexchange/182060-advanced-control-with-the-bi-copter-hardware
https://www.youtube.com/watch?v=DvDSkyDHb9o
https://www.youtube.com/watch?v=DvDSkyDHb9o

MathWorks @

@MathWorks

EXPO experience

Share the
#MATLABEXPO

.I

m in/melda-ulusoy

1
>
(e)
=
c
o

1
o
=<
c
o
—
£

618b8b106

MATLAB BEXIPO

Thank you

o’-/} MathWorks:

© 2025 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.
See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.

[/

	Slide 0
	Slide 1: Motivation and Background: Low-cost hardware, allowing classical and advanced control experiments
	Slide 2: This presentation focuses on the following topics
	Slide 3: Hardware overview
	Slide 4: The low-cost bi-copter and its features
	Slide 5: 3D printing and assembly instructions are available for the bi-copter hardware
	Slide 6: Bi-copter runs a pre-loaded Simulink controller (open- or closed-loop) and sends/receives data to MATLAB Live Script
	Slide 7: Workflow for classical controller design
	Slide 8: Modeling based on physics (linear approximation)
	Slide 9: Design of experiments are performed to collect input-output data for system identification
	Slide 10: All experiments are carried out using MATLAB Live Script interfacing with the bi-copter
	Slide 11: Select most appropriate model
	Slide 12: PID controller is tuned using different gain cross-over frequencies
	Slide 13: Servo controller is designed using discrete linear quadratic regulator method (dLQR function)
	Slide 14: Optimal pole locations are obtained for various values of the parameter R. Let's see it in practice!
	Slide 15: Closed-loop testing of the servo controller
	Slide 16: Next, we will focus on MPC design and deployment
	Slide 17: Next, we will focus on MPC design and deployment
	Slide 18: In addition to fundamentals, bi-copter hardware also lets educators introduce advanced control concepts such as MPC.
	Slide 19: MPC uses a dynamic model of a system to predict future behavior and optimize control actions in real time, subject to constraints.
	Slide 20: Here’s the end-to-end workflow for MPC design and deployment.
	Slide 21: Here’s the end-to-end workflow for MPC design and deployment.
	Slide 22: An MPC is designed using the MPC Designer app to maintain the bi-copter at the specified reference angles.
	Slide 23: Testing the deployed MPC in closed-loop
	Slide 24: MPC successfully compensates for the unmodeled disturbance.
	Slide 25: In summary, educators can use the bi-copter hardware to provide students with hands-on experience across a wide range of control topics, from fundamentals to advanced controls.
	Slide 26
	Slide 27

