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Motivation and Background: Low-cost hardware, allowing
classical and advanced control experiments

Bi-Copter with Bi-Copter with
Aeropendulum _
2011 PIC16F690 Arduino Nano
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This presentation focuses on the following topics
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Hardware overview
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The low-cost bi-copter and its features
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3D printing and assembly instructions are available for the
bi-copter hardware

Assembly instructions [link]
3D printing instructions [link]

Source Files [link]
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https://vimeo.com/901642594?fl=pl&fe=sh
https://vimeo.com/901644283?fl=pl&fe=sh
https://github.com/eenikov/Arduino-based-bi-copter-experiments/tree/main/SolidWorksFiles

Bi-copter runs a pre-loaded Simulink controller (open- or closed-
loop) and sends/receives data to MATLAB Live Script
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Workflow for classical controller design
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Modeling based on physics (linear approximation)

Propeller: Jm—c%’- + bwm = Kl (1)
di .
DC Motors: La + Ri 4+ Kpwm = v, (2)
Q(5) _ K. 3)
V(s) (Ims+b)(Ls+ R) + KpKnm’
Overall Model:
@(S) Kl

Gls) = U(s) ~ (Jbs2 + cs + k)[(Ims + b)(Ls + R) + Ko]’ (4)
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Design of experiments are performed to collect input-
output data for system identification
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All experiments are carried out using MATLAB Live Script

interfacing with the bi-copter

System

identification

\=/ Live Editor - C:\Data\Agencies\SmallGrant\Mathworks\BiCopter\Bicopter_Live.mlx S » I
LIVE EDITOR SERT FIGURE
I | ) Compare v (=] F Normal ¥ N\ @ Refactor v » é Section Break
o O H Y oA E] & = = >
New Open Save oy Print Go To Q Find Text : A Code Control Task % & wd Run Run and Advance Run
v o v v Export ¥ N ﬂ Bookmark ¥ ' v [5 &f [fo Section E,; Run to End
FILE NAVIGATE TEXT CODE SECTION
FMT_12_data.m ASMEPAPERFig9.m Bicopter_Live.mlx untitled.mix * Report.m | untitled4 +
2 close all
3 IPADRR="'192.168.11.46"

IPADRR = '192.168.11.46"
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Task 3: Open Loop Test

To carry ot the open-loop test, disconnect the USB cable from the device, and flip the power switch to that the device green LED is on (battery=——
have been loaded in the Adruino.

The input test data can be gererated using the MATLAB funciton idinput() as follows:

dur=2000; % number of data points
Input = idinput(dur, 'rbs', [0 1/30], [-7 7]);

This generates a binary input with a frequency bandwidth from 0 to 0.1 of the Nyquist frequency and a range from -10 to 10. Once data has been generated, run the following script to
send it to the Arduino and collect response. Make sure to keep clear from the propellers before running the following sequence!!!

tcp = tcpclient(IPADRR,25000);
%write(tcp,0,"int8");
%pause(1);
flush(tcp);
write(tcp,Input,'int8');
tic I
en = @;
while en ==
dat = read(tcp,2, 'double’);
en = dat(2);

end
D = read(tcp,2*dur, 'double’); emailarizona-my.sharepoint.com is sharing your screen and audio. Stop sharing Hide
Output = D(1:2:end): X

Zoom: 100% UTF-8 LF script Ln 7 Col 22
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Select most appropriate model
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PID controller is tuned using different gain cross-over
frequencies

PIDtune | Foard T G
PIDtune 12 rom: ot [

Cl=pidtune(G2,C0,1)
C2=pidtune(G2,C0,2)
C3=pidtune(G2,C0,3)
C4=pidtune(G2,C0,4)
step(feedback(C1*G2,1),...
feedback(C2*G2,1),...
feedback(C3*G2,1),...
feedback(C4*G2,1))
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We=3| |
We=4

o
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C2= Kp + Ki * -=-==== + Kd * —-=====
z=1 Ts*=z

with Kp = -6.79, Ki = -23.1, Kd = -0.499, Ts = 0.01 MATLAB E)m



Servo controller is designed using discrete linear
quadratic regulator method (dLQR function)

Jo

CC(z) is designed
As reduced-order
observer/controller
Using polynomial
algebra

'+ Ritdt = [ x"CTCx + Rud

Plant with Integrator Added
(Known from System ID)

[ [

» CC(z) — Gf =

G(z)

\

Servo Controller
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Optimal pole locations are obtained for various values of
the parameter R. Let's see it in practice!

PID and
State-Space

Controller
Design

=) Live Editor - C\Data\Agendies\SmallGrant\Mathworks\BiCopter\Bicopter_Live.mix

LIVE EDITOR
o M H i Compare [ ~ = Normal ¥ : = & Refactor ¥ L:_ =] Section Break L/
New Open Save & Print GoTo fna ¥ Tet *° Code Control Task % 8 Run ‘:9 Run and Advance Run
v g v gy Ebpon ¥ - n Bookmark ¥ v v el lle Section C‘"_g Run to End
I | NAVIGATE ) TEXT __cot - SECTION
FMT_12 datam ASMEPAPERFIg9.m Bicopter_Live.mix untitled.mix * Reportm untitledd | +

Task 5: Controller Design and Implementation
After fitting a model to the bicopter /o data, we proceed with the design of a controller. Use Tune PID Controller Live Task (or iin command mqg

below)

31 Co = pid(1,1,1,'Ts",ts, 'IFormula’, 'BackwardEuler', 'DFormula’, 'BackwardEuler’');
32 C=pidtune(G,C0,1.5)
C
1s*2 1
Kp + ki * +Kd*
wud Ts*z
with Kp = -5.82, Ki = -71.5, Kd = -0.118, Ts = 0.01
Sample time: ©.01 seconds
Discrete-time PID controller in parallel form.
33 figure;step(feedback(C*G,.5))
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Closed-loop testing of the servo controller

Testing

controllers in
closed-loop
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Next, we will focus on MPC design and deployment
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Next, we will focus on MPC design and deployment
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|
In addition to fundamentals, bi-copter hardware also lets
educators introduce advanced control concepts such as MPC.

Controller design and deployment
System identification

PID control Algorithm development

Mechatronics Hands-on learning
Sensors and actuators

18 MATLAB EXPO



MPC uses a dynamic model of a system to predict future behavior
and optimize control actions in real time, subject to constraints.

Cost function Constraints

Optimizer \.

Reference | \ Prediction Manipulated variables (MVs)
model )

MPC Controller

State
estimates ] ,
State Estimator '

19 MATLAB BXPPO
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|
Here’s the end-to-end workflow for MPC design and

deployment.

Workflow

Design of System : Testing MPC
| identification | IS C Rt | in closed-loop

20 MATLAB BXPPO



Here’s the end-to-end workflow for MPC design and
deployment.

Workflow

Design of System 3| MPC design Testing MPC
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An MPC is designed using the MPC Designer app to
maintain the bi-copter at the specified reference angles.

MPC design
- o e
[ mubink
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Testing the deployed MPC in closed-loop

Testing MPC

- = = in closed-loop

[=] CAMPC\Bi_copter_ MPC.mix * = e X
LIVE EDITOR INSERT FIGURE VIEW

q_[: e | B 5] Compare = <L ;. Norm/al'” — ; E&eman&nk l) @»
New Open Swe TIEOMTS e p, Qinds Tea B I 1 B Cote conol Tk B BE | g U RinandAdvance | g, gy sup
v - v opot v v [ Bookmark v - - z Section P2) Run to End
FILE NAVIGATE TEXT CODE SECTION RUN =
2 z = “HE
Testing the designed MPC in closed-loop =)
=
For testing the designed MPC, deploy the closed-loop model to Arduino first F
66 % Generate three-level square wave reference signal 1]
67 length = 2500;
68 Ref = zeros(length,1);
69 Ref(501:1000) = -0.30;
70 Ref(1501:2000) = 0.30;
71 plot(Ref);
72 xlabel("Time [samples]™);ylabel(“Reference angle“);
03
0.2
° 0.1
[=J
(=
@
8 o
£
3
2
01
02
03
500 1000 1500 2000 2500
Time [samples]

73 % Run experiment to test the designed MPC in closed-loop

74 IPADRR = '192.168.1.27'; %typically IP address remains unchanged after deployment of closed-loop model
75 clear tcp;

76 tcp = tcpclient(IPADRR,25000);

77 write(tcp,0, 'single’);

78 pause(5);

79 flush(tcp);

20 wnital+rn Rof ‘cinmla’):

Zoom: 110% UTF-8
23
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MPC successfully compensates for the unmodeled

disturbance.
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In summary, educators can use the bi-copter hardware to provide
students with hands-on experience across a wide range of control topics,
from fundamentals to advanced controls.

Check out these resources for more information:

= Prof. Enikov’s repository contains:

— Bi-copter 3D printing and assembly instructions
— MATLAB code and Simulink models for system
identification & PID / state-space control

= MPC with bi-copter

HANDS-ON LEARNING

— MPC code and models BI-COPTER CONTROL
USING MPC

— Tech talk video

System Identification and MPC Design using a Low-
Cost Bi-Copter Hardware

MATLAB BXPPO


https://www.mathworks.com/matlabcentral/fileexchange/169658-arduino-based-bi-copter-experiments?s_tid=srchtitle
https://www.mathworks.com/matlabcentral/fileexchange/169658-arduino-based-bi-copter-experiments?s_tid=srchtitle
https://www.mathworks.com/matlabcentral/fileexchange/169658-arduino-based-bi-copter-experiments?s_tid=srchtitle
https://www.mathworks.com/matlabcentral/fileexchange/169658-arduino-based-bi-copter-experiments?s_tid=srchtitle
https://www.mathworks.com/matlabcentral/fileexchange/182060-advanced-control-with-the-bi-copter-hardware
https://www.mathworks.com/matlabcentral/fileexchange/182060-advanced-control-with-the-bi-copter-hardware
https://www.youtube.com/watch?v=DvDSkyDHb9o
https://www.youtube.com/watch?v=DvDSkyDHb9o
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