ASML

Facing Moore's Law with Model-Driven R\&D

Markus Matthes
Executive Vice President Development and Engineering, ASML

Contents

- Introducing ASML
- Lithography, the driving force behind Moore's Law
- How to continue driving Moore's law?
- Summary and conclusions

Introducing ASML

It's hard to imagine a world without chips
Global market 2014: 221 billion chips, $\$ 333$ billion

ASML

ASML makes the machines for making those chips

- Lithography is the critical tool for producing chips
- All of the world's top chip makers are our customers
- 2014 sales: €5.9 bln
- People: ~14,000 FTEs

Founded in 1984 as a spin-off from Philips...

... with global presence!

Slide 8
Slide 8

Moore's law

Driving the semiconductor industry: Moore's Law

Fig. 2 Number of components per Lntegrated fanction for minimum cost per component extrapolated va time.

Gordon Moore (1965): Number of transistors per chip doubles every year.

Later adjusted to two years, the trend has held for half a century

Moore's Law makes chips cheaper...

... and more energy-efficient

Computations per Kilowatt hour double every 1.5 years

Lithography, the driving force behind Moore's Law

A chip is made of dozens of layers

The manufacturing loop

Lithography is critical for shrinking transistors

Like a photo enlarger of old, lithography forms the image of chip patterns on a wafer

The ASML ecosystem makes this happen

Open Innovation from design to manufacturing

ASML

Customers
Semiconductor producers
Supplier and parther network
Optics, measurement systems, parts, subsystems

Virtual innovation netiwork

Academia, technology providers, research institutes

Open Innovation from design to manufacturing

ASML

Advanced Research Center for Nanolithography

ASML

Increasing complexity, increasing challenges

Scanner functionality and hardware become increasingly more complex

Fitted function
The world is far from perfect at (sub-)nanometer level

- Flat is no longer flat, straight is no longer straight
- Variations due to flow, temperature and humidity variations
- Sensitivity to dynamics, magnetics, and pressure differences

Physics, mathematics and software correct hardware imperfections at (sub-)nanometer level

Public

transformation state

Example: Lens Model

- Laser beam heats up lens
- A sensor measures the lens aberrations
- The lens model calculates how to adjust the lens (within 12 ms)
- Lens is adjusted and wafer is exposed in optimum state
- Lens model implemented in MATLAB
- Timing constraints met by code optimization together with MathWorks: 39\% speed gain
Reticle
Projection Lens Wafer stage

Function	Original MATLAB Codde		Best solution in MATLAB
Speedup Gain			
qpGTikh	1.331 s	$0.613 \mathbf{~ s}$	54%
analytic center	3.206 s	2.549 s	21%
Total	$\mathbf{4 . 4 0 3} \mathbf{~}$	$\mathbf{2 . 6 9 3} \mathbf{~ s}$	39%

ASML

- TWINSCAN software consists of 40 million lines of code
- More than 500,000 lines of MATLAB code in TwinScan archive
- 20+ computing nodes running more than 200 processes

- Our software supports old as well as new systems
- SW archive embeds > 10 years of development history, thousands of man years of work

Slide 25
June 2015

How to continue driving Moore's law?

The other side of Moore's medal...
Development \& engineering costs rapidly growing

1980s:
PAS 2000/5000
R\&D: $50 \mathrm{mln} €$

1990s:
PAS 5500
R\&D: $400 \mathrm{mln} €$

2000s:
TWINSCAN
R\&D: 1500 mln €

NXE EUV
R\&D: > 2000 mln €

How to continue driving Moore's law and ensure customer profitability, while keeping R\&D cost under control?

Investing in early development phase leads to gain in product maturing phase and earlier customer profitability

Early development phase

Let us look at a Development and Engineering work flow

Different approach needed to reduce development effort

Effort

solution
implementation, testing and maintenance

paradigms, models, technology and tools

ASML

Model Driven Engineering vision

ASML

Slide 32
June 2015

Summary and conclusions

ASML

Summary and Conclusions

- Moore's Law has shaped the world as we know it
- Lithography has enabled and driven Moore's Law
- "Moore's law for product development" is not sustainable
- To continue driving Moore's law, the R\&D way of working needs to evolve towards a system-wide model driven engineering approach
- Directions pursued are: higher abstraction levels, executable specifications (models instead of documents), formal model verification and design time validation, automatic code generation
- Further elaboration of industry standards is desirable to easily connect solutions across the development chain
- Strategic partnerships, such as between ASML and MathWorks, are instrumental to achieve this

ASML

