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What Is an SPV in the Private Stock Market? s i

« Multiple investors contribute capital into a single legal entity that in turn holds

shares of a private company.

 Typically invests in one private company rather than multiple companies

unlike a traditional fund. Cease to exist at the company’s liquidity event.

» Direct share transactions often need company approval but not for the SPV

since the SPV is the shareholder on record and not the investor
* Pros: access, pooling, simple settlement process

« Cons: valuation complexity due to fees and opaque underlying stock price



What Makes SPV Valuation Challenging? ot i s

« GP’s carried interest (often around 20% of profits), resembles a call option on

the profits.

« Absence of observable, market-based pricing prevents accurate assessment

of how embedded optionality affects value over time.

» Buyers in secondary transactions must accept existing carry arrangements,

which tends to reduce potential upside and makes pricing less transparent.

» Because carry is path-dependent, simple valuation heuristics often fail, and

dynamic modeling is needed for reliable valuation.



Addressing Valuation Challenges ot s

* Model carry explicitly as an embedded option in SPV and use the value of the
option as discount to underly to get SPV valuation

« Use a stochastic exit model so uncertainty in of the liquidity event is built into
embedded option valuation.

« Use daily price estimates as source of price and volatility in the
valuation model.

« Use physics-informed neural networks to solve this stochastic maturity option

pricing model that learns to estimate the embedded option price for an SPV.



Why Using PINNs Helps with SPV Pricing? p e

« When a differential equation describes how SPV value evolves, a PINN can learn
that behavior without needing an explicit closed-form formula !'l.

« Management fees and carry provisions can be built into the model via modified
payoff or dividend terms, so the pricing reflects the real cashflows.

« Even if market data is sparse, PINNs can train effectively using simulated
scenarios or partial observations to learn value dynamics.

« PINNSs scales polynomially as complexity increases rather than exponentially 21,

 Alternatives like Monte Carlo simulation or PDE solvers may require much more

computations, but once a PINN is trained it can deliver pricing results quickly.



SPV Liquidity Events Occur Randomly e

* An SPV reaches its end when the underlying company has a liquidity event such

as an IPO or acquisition, rather than at a fixed, predictable date.

« The time until that event is assumed to follow an exponential probability

distribution, with density given by
f@) =he™

* The rate parameter A is chosen so that the expected waiting time for maturity

equals 1/4 at any moment.

* Assuming A=0.25, corresponds to 4 years to liquidity event on an average
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Pricing the Embedded Short Call in an SPV

* For a small discrete time increment At, the short call price is the discounted

expected value of the probability weighted next period payoff 3.

Cspy () = e ™ E [Aa(Sprar — K)* + (1 = D Copy (t + AL)]
J

\ J \
LYQ | |
Discounting Payoff at Continue
Factor maturity

r = Risk free rate

S = Stock price

a = Carry

K = Cost basis for carry calculations
[ = Management fee

(S; — K)* = max(S; — K, 0)



NEIY
Expected Value Expression for the Embedded Short Call =~ ===

e As At — 0, the call price is given by 4]

0.0)

Copy(Sg) = | e™™ de~H E[la(S, — K)]dt ()
0 \ ) \ v 1
Discounting  Exponential Expected Payoff
Factor PDF of maturity at maturity
CSPV(SO) — ]E [f Ae_ﬂte_r a(St — K)+dt (2)
0
Cspy(So) = E[e ™™ a (St — K)™] (3)

« S, is the stock price at time 0 and T is the random Maturity

* Eq 3, was used to generate training and testing data using Monte-Carlo
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Time-independent Ordinary Differential Equitation

 The differential equation form given by !4

1 azCSPV aCSPV
(5)0252 g2 + 7S = (r+M)Cspy + 1(S — K)T=0 (4)

 Incorporating fee (f), as dividend, and carry (a), as partial payoff factor,

(1) 5252 9 Cspy + (r=f)S

dCspy
2 0S? N

— (T"‘A)CSPV + al (S — K)+ = 0 (5)

* Feynman-Kac method can also be used with Eq 2 to get Eq 5

 Solution for C4p, can be used to estimate the price of SPV, S¢py = S — Copy
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Normalizing Price and Strike for SPV Value cassrien

* Because S and K vary across large scales relative to other variables, using the

raw values can be difficult for neural network to learn.
« Normalized variable, moneyness, s=S/K, was introduced in Eq 5

C
Cspv = SPV/K and Cspy = Kcspv

dCspy _ Kacspv _ Kacspv 1 _ dCspy
dS aS ds K ds

aZCSpV _ aZCSpv 1
0S2 ds? K
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Normalizing Price and Strike for SPV Value cassrien

dCspv 0°%Cspy 1 .
— IinE
ds and 0s? K q S

* Substituting Kcgpy,,

A 2 9 Cspv 1 K OCspr DK AK DY=0 (
5o K ST — K+(r—f)sas—(r+)cspv+a (s =17 =

V

— (r+MDegpy + al(s —1)" =0 (7)

1 d%c dc
- 2 2 Spv . SP
(2>0 S 352 + (r—f)s I

 Eqg 7 was used in the loss function of the neural networks as ODE residual loss
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Boundary Conditions: SPV Value as Stock Price - o or oo e

« When S — 0,s — 0 and SPV is expected to be worthless, hence C¢, = 0

» WhenS — 00, (S — K)* > (Se"/ — K) and Eq 2 becomes

0.0)

CSPV(SO)ZJ Ao+t q(Ser=Pt — K)dt (8)
0
« After integrating

Cspy = ad (S —— K

SPV S FE AT T+

« |n normalized form

1 1
— — 9
Csiv aﬂ(f+7ts r+/1) (9)
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Smoothing the Payoff in the Loss Function i s

« The payoff function (s — 1)* is not smooth at s = 7 or S = K, which causes

difficulties for neural networks during training.

« (s —1)" replaced with a smooth Softplus function that approximates payoff

structure without discontinuity

1 0%c 0
(—) 02s2——22 4 (r—f)s g

V

SP 1 ~
) 0s2 Os o (r+)l)cgpv + aAl (Eln(l ‘I‘ek(s 1)) = 0 (10)

« Sharpness parameter k = 37
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Neural Network Specification and Parameter Summary =
« The network uses four fully connected layers with Swish activations, Z=
together with input and output layers, making ten layers in total. L
% s
« Weights are initialized using Xavier initialization and biases are set to
= o
zero which helps ensure gradient stays stable during training !
%
» Swish activation is chosen because smooth activation functions often ...
produce better training convergence and performance for PINNs [l
B CiConnacna
Sh(x) =
e (x) (1 + ex) 2 e
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Neural Network Specification and Parameter Summary

Layer Name Type Activations Weights Bias IljleuoTanelorI(e)i

1 featureinput Feature Input 5 x1

2 fclayen Fully Connected 128 x 1 128 x § 128 x 1 768

3 swishi Swish 128 x 1

4 fclayer2 Fully Connected 128 x 1 128 x 128 128 x 1 16512

5 swish2 Swish 128 x 1

6 fclayers Fully Connected 128 x 1 128 x 128 128 x 1 16512

7 swish3 Swish 128 x 1

8 fclayery Fully Connected 128 x 1 128 x 128 128 x 1 16512

9 swish4 Swish 128 x 1

10 output Fully Connected 1x1 1x128 1x1 129
total 50,433
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Generating Training Data for the Model v

17

Real SPV trades are limited and noisy, so they are only used to choose realistic

ranges for parameters and to validate out-of-sample performance
One million samples are drawn across those ranges to train the model

Sampled moneyness s from Gamma(2,1) to obtain more points near s=7, near the

discontinuity and where errors tend to be largest.

Using the Gamma(2, 1) for sampling s helps stabilize learning in non-smooth

regions of the payoff.

Monte Carlo simulation is used to estimate call prices for the training set



Training Strategy and Hyperparameter Setup e

* The training uses the Adam optimizer over 200 epochs to update model

parameters adaptively

* Trained in mini-batches of size 1,000, and with random shuffling after every

epoch

 Loss function includes Boundary condition losses (Eq 8 & 9), the PDE residual

loss (Eq 10) and MSE against MC calculated call price

» Gradient clipping used to prevent exploding gradients, and a learning rate

schedule to help convergence
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PINN vs Data-Driven Models: Comparative Performance =
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Only 65 good trades available for the comparative analysis
Regression Learner App was used to train 28 model to compare against

Ensemble model with 30 learners, minimum leaf size of 8, and learning rate of 0.1

had the least RMSE and was selected for comparison

PINN Ensemble
MAE 11.46 4.82
RMSE 19.80 6.61
R-Squared 0.83 0.82

Apparent better performance for Ensemble compared to PINN with trade data

Bias, Actual > PINN in data and confirmed by t-test on Actual - predicted
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Evaluating PINN Predictions via OLS Regression
* OLS regression carried out between PINN prediction and actual trade prices
Estimate SE tStat pValue
(Intercept) -1.5099 1.2351 -1.2224 0.22609
PINN Call Price 5.0074 0.2838 17.644 4.59E-26

Number of observations: 65, Error degrees of freedom: 63
Root Mean Squared Error: 7.32

R-squared: 0.832, Adjusted R-Squared: 0.829

F-statistic vs. constant model: 312, p-value = 4.48e-26

« Coefficient for the PINN predicted was 5 & statistically significant

» High coefficient value is another evidence of bias in data suggesting trades at

a deep discounts to fair value of embedded call
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PINN vs Data-Driven Models: Comparative Performance =

« A testing data set was generated using MC and both models were tested

PINN Ensemble
MAE 0.023 12.990
RMSE 0.038 21.500
R-Squared 100 62.60
Mean Difference o) -1.612

« Mean difference was calculated between actual and prediction to test for bias

« A two-sample t-test showed that this difference was statistically significant,
suggesting the data driven model overestimated the embedded call prices as

it was trained on biased data.
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Build, Scale, Deploy: MATLAB on AWS

* Very detailed documentation with examples to get started
» Deep learning toolbox offers quick way to build POC due to less moving parts
« Scaling on CPU+GPU using Parallel computing toolbox

« Matlab docker image on AWS Sagemaker allows the use CPU or GPU optimized

instances as needed

« Complier SDK allows rapid deployment of Matlab docker image and use it as

Microservice on AWS App Runner

« Matlab technical support for expedited trouble-shooting
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Conclusion

* PINN is able to price SPV structures by learning embedded optionality without the

need of clean training data.

« Testing against real trades confirms that PINN not only captures price

directionality but does so with statistical significance and avoids overfitting

 NPM's propriety daily source for stock prices and volatility, , can be used

to price SPVs, offering confidence in this innovative pricing solution

* This framework can offer transparency to market participants and help reduce

information asymmetry in private stock markets.
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