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What Is an SPV in the Private Stock Market? 

• Multiple investors contribute capital into a single legal entity that in turn holds 

shares of a private company. 

• Typically invests in one private company rather than multiple companies 

unlike a traditional fund. Cease to exist at the company’s liquidity event.

• Direct share transactions often need company approval but not for the SPV 

since the SPV is the shareholder on record and not the investor

• Pros: access, pooling, simple settlement process

• Cons: valuation complexity due to fees and opaque underlying stock price 



4

What Makes SPV Valuation Challenging? 

• GP’s carried interest (often around 20% of profits), resembles a call option on 

the profits.

• Absence of observable, market-based pricing prevents accurate assessment 

of how embedded optionality affects value over time.

• Buyers in secondary transactions must accept existing carry arrangements, 

which tends to reduce potential upside and makes pricing less transparent.

• Because carry is path-dependent, simple valuation heuristics often fail, and 

dynamic modeling is needed for reliable valuation.
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Addressing Valuation Challenges 

• Model carry explicitly as an embedded option in SPV and use the value of the 

option as discount to underly to get SPV valuation 

• Use a stochastic exit model so uncertainty in of the liquidity event is built into 

embedded option valuation.

• Use Tape D® daily price estimates as source of price and volatility in the 

valuation model.

• Use physics-informed neural networks  to solve this stochastic maturity option 

pricing model that learns to estimate the embedded option price for an SPV.
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Why Using PINNs Helps with SPV Pricing? 

• When a differential equation describes how SPV value evolves, a PINN can learn 

that behavior without needing an explicit closed-form formula [1].

• Management fees and carry provisions can be built into the model via modified 

payoff or dividend terms, so the pricing reflects the real cashflows.

• Even if market data is sparse, PINNs can train effectively using simulated 

scenarios or partial observations to learn value dynamics.

• PINNs scales polynomially as complexity increases rather than exponentially [2].

• Alternatives like Monte Carlo simulation or PDE solvers may require much more 

computations, but once a PINN is trained it can deliver pricing results quickly.
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SPV Liquidity Events Occur Randomly 

• An SPV reaches its end when the underlying company has a liquidity event such 

as an IPO or acquisition, rather than at a fixed, predictable date.

• The time until that event is assumed to follow an exponential probability 

distribution, with density given by 

• The rate parameter 𝜆 is chosen so that the expected waiting time for maturity 

equals 1/𝜆 at any moment.

• Assuming 𝜆=0.25, corresponds to 4 years to liquidity event on an average 

𝑓 𝑡 = λ𝑒ିఒ௧
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Pricing the Embedded Short Call in an SPV 

• For a small discrete time increment Δt, the short call price is the discounted 

expected value of the probability weighted next period payoff [3]. 

𝑟 = 𝑅𝑖𝑠𝑘 𝑓𝑟𝑒𝑒 𝑟𝑎𝑡𝑒
𝑆 = 𝑆𝑡𝑜𝑐𝑘 𝑝𝑟𝑖𝑐𝑒
𝛼 = 𝐶𝑎𝑟𝑟𝑦
𝐾 = 𝐶𝑜𝑠𝑡 𝑏𝑎𝑠𝑖𝑠 𝑓𝑜𝑟 𝑐𝑎𝑟𝑟𝑦 𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑠
𝑓 = 𝑀𝑎𝑛𝑎𝑔𝑒𝑚𝑒𝑛𝑡 𝑓𝑒𝑒

𝑆௧ − 𝐾 ା = 𝑚𝑎𝑥 𝑆௧ − 𝐾, 0

𝐶ௌ௉௏ 𝑡 = 𝑒ି௥୼௧𝔼௧ 𝜆𝛼 𝑆௧ା୼௧ − 𝐾 ା + 1 − 𝜆 𝐶ௌ௉௏ 𝑡 + Δ𝑡

Payoff at 
maturity

ContinueDiscounting 
Factor
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Expected Value Expression for the Embedded Short Call 

• As Δ𝑡 → 0, the call price is given by [4],

• S0 is the stock price at time 0 and T is the random Maturity 

• Eq 3, was used to generate training and testing data using Monte-Carlo

𝐶ௌ௉௏ 𝑆଴ = න 𝑒ି௥௧
ஶ

଴

           𝜆𝑒ିఒ௧         𝔼 𝛼 𝑆௧ − 𝐾 ା 𝑑𝑡

Expected Payoff 
at maturity

Exponential 
PDF of maturity

Discounting 
Factor

(1)

𝐶ௌ௉௏ 𝑆଴ = 𝔼 න 𝜆𝑒ିఒ௧𝑒ି௥
ஶ

଴

𝛼 𝑆௧ − 𝐾 ା𝑑𝑡 (2)

𝐶ௌ௉௏ 𝑆଴ = 𝔼 𝑒ି௥்𝛼 𝑆் − 𝐾 ା (3)
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• The differential equation form given by [4]

• Incorporating fee (f), as dividend, and carry (α), as partial payoff factor,

• Feynman-Kac method can also be used with Eq 2 to get Eq 5

• Solution for CSPV can be used to estimate the price of SPV, SSPV = S – CSPV

Time-independent Ordinary Diůerential Equitation 

1

2
𝜎ଶ𝑆ଶ

𝜕ଶ𝐶ௌ௉௏

𝜕𝑆ଶ
+  𝑟 − 𝑓 𝑆 

𝜕𝐶ௌ௉௏

𝜕𝑆
−  𝑟 + 𝜆 𝐶ௌ௉௏  +  𝛼𝜆 𝑆 −  𝐾 ା =  0

1

2
𝜎ଶ𝑆ଶ

𝜕ଶ𝐶ௌ௉௏

𝜕𝑆ଶ
+ 𝑟𝑆 

𝜕𝐶ௌ௉௏

𝜕𝑆
− 𝑟 + 𝜆 𝐶ௌ௉௏  +  𝜆 𝑆 −  𝐾 ା =  0 (4)

(5)
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• Because S and K vary across large scales relative to other variables, using the 

raw values can be difficult for neural network to learn.

• Normalized variable, moneyness, s=S/K, was introduced in Eq 5 

Normalizing Price and Strike for SPV Value 

𝑐௦௣௩ = ஼ೄುೇ
௄ൗ and 𝐶ௌ௉௏ = 𝐾𝑐௦௣௩

𝜕𝐶ௌ௉௏

𝜕𝑆
= 𝐾

𝜕𝑐௦௣௩

𝜕𝑆
= 𝐾

𝜕𝑐௦௣௩

𝜕𝑠

1

𝐾
=

𝜕𝑐௦௣௩

𝜕𝑠

𝜕ଶ𝐶ௌ௉௏

𝜕𝑆ଶ
=

𝜕ଶ𝑐௦௣௩

𝜕𝑠ଶ

1

𝐾
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• Substituting 𝐾𝑐௦௣௩,
డ௖ೞ೛ೡ

డ௦
and 

డమ௖ೞ೛ೡ

డ௦మ

ଵ

௄
 in Eq 5

• Eq 7 was used in the loss function of the neural networks as ODE residual loss

Normalizing Price and Strike for SPV Value 

1

2
𝜎ଶ𝐾ଶ𝑠ଶ

𝜕ଶ𝑐௦௣௩

𝜕𝑠ଶ

1

𝐾
+ 𝑟 − 𝑓 𝐾s 

𝜕𝑐௦௣௩

𝜕𝑠
−  𝑟 + 𝜆 𝐾𝑐௦௣௩  +  𝛼𝜆𝐾 s − 1 ା =  0

1

2
𝜎ଶ𝑠ଶ

𝜕ଶ𝑐௦௣௩

𝜕𝑠ଶ
+  𝑟 − 𝑓 s 

𝜕𝑐ௌ௉௏

𝜕𝑠
−  𝑟 + 𝜆 𝑐௦௣௩  +  𝛼𝜆 s − 1 ା =  0 (7)

(6)
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• When S → 0, s → 0 and SPV is expected to be worthless, hence CSPV = 0

• When S →∞, 𝑆 −  𝐾 ା → 𝑆𝑒௥ି௙  −  𝐾 and Eq 2 becomes

• After integrating

• In normalized form

Boundary Conditions: SPV Value as Stock Price → 0 or ∞ 

𝐶ௌ௉௏ = 𝛼𝜆
1

𝑓 + 𝜆
𝑆 −

1

𝑟 + 𝜆
𝐾

𝐶ௌ௉௏ 𝑆଴ = න 𝜆𝑒ି ௥ାఒ ௧
ஶ

଴

𝛼 𝑆𝑒 ௥ି௙ ௧ − 𝐾 𝑑𝑡

𝑐௦௣௩ = 𝛼𝜆
1

𝑓 + 𝜆
𝑠 −

1

𝑟 + 𝜆

(8)

(9)
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• The payoff function s − 1 ା is not smooth at s = 1 or S = K, which causes 

difficulties for neural networks during training.

• s − 1 ା replaced with a smooth Softplus function that approximates payoff 

structure without discontinuity

• Sharpness parameter k = 37

Smoothing the Payoů in the Loss Function 

1

2
𝜎ଶ𝑠ଶ

𝜕ଶ𝑐௦௣௩

𝜕𝑠ଶ
+ 𝑟 − 𝑓 s 

𝜕𝑐ௌ௉௏

𝜕𝑠
−  𝑟 + 𝜆 𝑐௦௣௩  +  𝛼𝜆

1

𝑘
𝑙𝑛 1 + 𝑒௞ ௦ିଵ =  0 (10)
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• The network uses four fully connected layers with Swish activations, 

together with input and output layers, making ten layers in total.

• Weights are initialized using Xavier initialization and biases are set to 

zero which helps ensure gradient stays stable during training [6]

• Swish activation is chosen because smooth activation functions often 

produce better training convergence and performance for PINNs [5]

𝑠𝑤𝑖𝑠ℎ(𝑥) =
𝑥

1 + 𝑒௫

.

Neural Network Specification and Parameter Summary 
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Neural Network Specification and Parameter Summary 

Number of 
Learnables Bias Weights Activations Type Name Layer 

5 × 1 Feature Input featureinput 1 

768 128 × 1 128 × 5 128 × 1 Fully Connected fclayer1 2 

128 × 1 Swish swish1 3 

16512 128 × 1 128 × 128 128 × 1 Fully Connected fclayer2 4 

128 × 1 Swish swish2 5 

16512 128 × 1 128 × 128 128 × 1 Fully Connected fclayer3 6 

128 × 1 Swish swish3 7 

16512 128 × 1 128 × 128 128 × 1 Fully Connected fclayer4 8 

128 × 1 Swish swish4 9 

129 1 × 1 1 × 128 1 × 1 Fully Connected output 10 
50,433 total 
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• Real SPV trades are limited and noisy, so they are only used to choose realistic 

ranges for parameters and to validate out-of-sample performance

• One million samples are drawn across those ranges to train the model

• Sampled moneyness 𝑠 from Gamma(2,1) to obtain more points near s=1, near the 

discontinuity and where errors tend to be largest. 

• Using the Gamma(2, 1) for sampling 𝑠 helps stabilize learning in non-smooth 

regions of the payoff.

• Monte Carlo simulation is used to estimate call prices for the training set

Generating Training Data for the Model 
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Training Strategy and Hyperparameter Setup 

• The training uses the Adam optimizer over 200 epochs to update model 

parameters adaptively

• Trained in mini-batches of size 1,000, and with random shuffling after every 

epoch

• Loss function includes Boundary condition losses (Eq 8 & 9), the PDE residual 

loss (Eq 10) and MSE against MC calculated call price

• Gradient clipping used to prevent exploding gradients, and a learning rate 

schedule to help convergence
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PINN vs Data-Driven Models: Comparative Performance 

• Only 65 good trades available for the comparative analysis 

• Regression Learner App was used to train 28 model to compare against

• Ensemble model with 30 learners, minimum leaf size of 8, and learning rate of 0.1 

had the least RMSE and was selected for comparison

• Apparent better performance for Ensemble compared to PINN with trade data

• Bias, Actual > PINN in data and confirmed by t-test on Actual - predicted 

Ensemble PINN 
4.82 11.46 MAE 
6.61 19.80 RMSE  
0.82 0.83 R-Squared 



20

Evaluating PINN Predictions via OLS Regression 

• OLS regression carried out between PINN prediction and actual trade prices

• Coefficient for the PINN predicted was 5 & statistically significant

• High coefficient value is another evidence of bias in data suggesting trades at 

a deep discounts to fair value of embedded call

pValue tStat SE Estimate 
0.22609 -1.2224 1.2351 -1.5099 (Intercept) 

4.59E-26 17.644 0.2838 5.0074 PINN Call Price 
Number of observations: 65, Error degrees of freedom: 63 
Root Mean Squared Error: 7.32 
R-squared: 0.832,  Adjusted R-Squared: 0.829 
F-statistic vs. constant model: 312, p-value = 4.48e-26 
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PINN vs Data-Driven Models: Comparative Performance 

• A testing data set was generated using MC and both models were tested 

• Mean difference was calculated between actual and prediction to test for bias

• A two-sample t-test showed that this difference was statistically significant, 

suggesting the data driven model overestimated the embedded call prices as 

it was trained on biased data.

Ensemble PINN 
12.990 0.023 MAE 
21.500 0.038 RMSE  
62.60 100 R-Squared 
-1.612 0 Mean Diůerence 
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Build, Scale, Deploy: MATLAB on AWS    

• Very detailed documentation with examples to get started

• Deep learning toolbox offers quick way to build POC due to less moving parts  

• Scaling on CPU+GPU using Parallel computing toolbox 

• Matlab docker image on AWS Sagemaker allows the use CPU or GPU optimized 

instances as needed

• Complier SDK allows rapid deployment of Matlab docker image and use it as 

Microservice on AWS App Runner 

• Matlab technical support for expedited trouble-shooting 
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Conclusion  

• PINN is able to price SPV structures by learning embedded optionality without the 

need of clean training data.

• Testing against real trades confirms that PINN not only captures price 

directionality but does so with statistical significance and avoids overfitting

• NPM’s propriety daily source for stock prices and volatility, Tape D®, can be used 

to price SPVs, offering confidence in this innovative pricing solution

• This framework can offer transparency to market participants and help reduce 

information asymmetry in private stock markets.
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