
0

Migration of Monolithic Algorithm

to Service Oriented Architecture

Mark Danielsen, MathWorks

1

An Example of Service Oriented Architectures

Let’s Talk About the Weather …

Mobile Weather Reports

▪ Weather App calls out to a Weather

Service in the cloud

▪ Weather Service gets request and

responds with a block a data that

represents current weather info

▪ Weather App decodes and displays

the information

Weather

Application

Weather

Service

2

An Example of Service Oriented Architectures

Let’s Talk About the Weather …

Mobile Weather Reports

▪ Weather App calls out to a Weather

Service in the cloud

▪ Weather Service gets request and

responds with a block a data that

represents current weather info

▪ Weather App decodes and displays

the information

Weather

Application

Weather

Service

More Details:

Weather Application

Calling out to a

function that is not part

of the Weather App

Weather Service is

providing some

function or service

The Service may or

may not respond

depending on the

function or application

Since the Weather

Service is in the cloud

this service is

accessible to millions

of users

3

Key Take Aways

▪ We have the tools to help move to Service Oriented Architectures (SOA)

▪ We can generate C++ code for SOA based components

▪ We are going to show you a lot of information in this presentation

▪ We are here to help so please engage with us in your SOA type projects

4

Challenge Statement and Project Benefits

Challenge:

▪ How to partition an algorithm into Services that allow for reusability, portability and still

maintain functionality of the algorithm

▪ Repartitioning algorithm content into smaller pieces will consist of engineering design

choices and requires engineering rigor

We will show:

▪ Once the partitioning decisions have been made, how to create the Service Oriented

Architecture framework

▪ How to create interfaces to Service Components

▪ How to create Simulink behavioral models

▪ how to create agnostic C++ code

▪ how to apply Adaptive AUTOSAR

5

Previous projects that helped defined SOA (Service Oriented

Architecture) with Models

We will build from these previous projects to show how to migrate a Monolithic Model to SOA

Technical Article: Migrating Traditional Automotive

Applications to SOA Applying Model Based Design to SDV Development

https://www.mathworks.com/company/technical-articles/migrating-traditional-automotive-applications-to-soa-for-software-defined-vehicles.html?s_tid=srchtitle_site_search_2_migrating%20traditional%20automotive%20application
https://www.mathworks.com/company/technical-articles/migrating-traditional-automotive-applications-to-soa-for-software-defined-vehicles.html?s_tid=srchtitle_site_search_2_migrating%20traditional%20automotive%20application
https://content.mathworks.com/viewer/65832aaddac3e3124a2d5c29

6

Trend: Automakers are embracing Software Oriented Architectures

and Standards

What makes SOA so attractive to

Automakers ??

By creating Service Components:

▪ Reusable Services that may be

shared with many applications or

components

▪ Potential for relocation of function

▪ Higher level of testability

▪ Potential for reduction in validation

due to sharing of functions across

application or components

7

Process of Decomposition to Composition

This is the process of

pulling your legacy

model apart …

and building in service

components with service

interfaces…

to create an SOA

framework

8

Reference to Potential Guiding Principles

8.5.2.1 Single-responsibility Principle

The single-responsibility principle (SRP,SWEBOK3) [7]

states that a component or class should be

responsible for a single part of the overall functionality

provided by the software. That responsibility should be

encapsulated by the component or class. The services

provided by the component or class (via its

interface(s)) should be closely aligned with its

responsibility.

The single-responsibility principle minimizes the

reasons (i.e. a change to the single responsibility) that

require a change to its interface. Thus, it minimizes

impact on clients of such an interface and leads to a

more maintainable architecture (or code).

We will utilize this principal when

working on creating Service

partitions in our models.

Explanation of Adaptive Platform Software Architecture (autosar.org)

Requires Engineering

Decisions and Choices

We will show you the

Engineering Decisions

that MathWorks made in

order to separate out

Service Components

https://www.autosar.org/fileadmin/standards/R22-11/AP/AUTOSAR_EXP_SWArchitecture.pdf

9

The Models that we are going to work on come from the second

presentation that I referenced

This project had models for two different

ECUs working together

Battery Management – which consisted of

AUTOSAR Classic components for Battery

State Health and State of Charge

Vehicle Control Unit (HPC) – Which

consisted of algorithms that are slated for an

Adaptive Platform

We are going to use the models for the

Vehicle Control Unit (HPC) for this

demonstration

Infotainment

System (IVI)
QM

Vehicle Control

Unit (HPC)
ASIL-B

Battery Management

(Embedded Edge)
ASIL-D

 “Sport+” Mode

 ▲TrqDemand ▲MaxBattCurrent
 ▲RegenOperation

10

Start with a Baseline Model with tests that pass

11

Based on Model Functions decide what will be the main app and

what will be Services

MathWorks Design Decisions

Identify and Analyze Services

Main app will retain full

functionality

Our end model will look like the

grey box in the model

However, the end refactored

model will call out to services in

place of some of the inline

functionality

12

Based on Model Functions decide what will be the main app and

what will be Services

MathWorks Design Decisions

Identify and Analyze Services

For this example, we are going to

refactor all of the functions that are

in blue boxes into service

components

In a staged approach, goal is to

make a few changes, and verify with

tests that no functionality was lost.

Use System Composer to refactor

our design to include service

components

13

New System Composer Onramp Training

Newly Release

March 2024 w/ R2024a

System Composer Onramp

is free self paced, online

training that will introduce

you to System Composer

features

System Composer Onramp

https://matlabacademy.mathworks.com/details/system-composer-onramp/orsc

14

Partition Algorithm Model Into Smaller parts with Service Interface

Define Services and Interfaces

In System Composer:

1) Created software architecture model

2) Create a software component box for our

main application

3) Define all I/O in the main application and

connect to Interface boundary of composition

15

Partition Algorithm Model Into Smaller parts with Service Interface

Define Services and Interfaces

In System Composer:

1) Created software architecture model

2) Create a software component box for our

main application

3) Define all I/O in the main application and

connect to Interface boundary of composition

4) Create a software component boxes for all

new service components

16

Partition Algorithm Model Into Smaller parts with Service Interface

Define Services and Interfaces

In System Composer:

1) Created software architecture model

2) Create a software component box for our

main application

3) Define all I/O in the main application and

connect to Interface boundary of composition

4) Create a software component boxes for all

new service components

5) Connect all service components to main

application with client server connectors

17

Partition Algorithm Model Into Smaller parts with Service Interface

Define Services and Interfaces

In System Composer:

1) Created software architecture model

2) Create a software component box for our

main application

3) Define all I/O in the main application and

connect to Interface boundary of composition

4) Create a software component boxes for all

new service components

5) Connect all service components to main

application with client server connectors

Now we have our Architecture model drawn

Next step is to create Client Server Interfaces

18

Define Client Server Interfaces
Define Services and Interfaces

A Service Component is connected to the Main App

through a Service Connector between the Client Port and

a Service Port

Client

Service

Service Connector

Main App

Service

Component

Purple Highlight shows that

an Interface is applied to

both Client and Service

Ports

Service Connector

Name

19

Define Client Server Interfaces
Define Services and Interfaces
Ability to define the full Service-Interface in terms of the function

prototypes and arguments

This allows for the Service Interface to be used to create the

model constructs for both the main app component and the

Service Component

Define the Client / Service Interface for each of the connected

Service Components

Service Interface Name

Define Inputs and Outputs to

function in terms of

datatypes, dimensions, units,

min, max etc;

Function based Proto-Type

 shows Function Name and Input

/ Output Arguments

Service Connector Name

20

Create Simulink Behavior Model for Service Component

Creating the Simulink Behavior

(empty skeleton model that will

contain your algorithm)

Right click on Component boxes

to create the Simulink Behavior

This action creates a skeleton or

shell model

Also, this will create blocks that

represent the Client / Service

interfaces

21

Create Simulink Behavior Model for Service Component

New Block: Function Port

Service Connector Name

Simulink Function Name

Simulink Function

22

Create Simulink Behavior Model for Service Component

Empty Simulink Function

23

Create Simulink Behavior Model for Service Component

Copy/Paste Original Function

Content into our Simulink

Function Here

24

Create Simulink Behavior Model for Main Application Component

Created skeleton model

25

Create Simulink Behavior Model for Main Application Component

Inputs and Outputs

Triggered Subsystem w/

Function Caller inside

Function Port

Triggered Subsystem

Simulink Function Name

Service Connector Name

26

Create Simulink Behavior Model for Main Application Component

Inputs and Outputs

Triggered Subsystem w/

Function Caller inside

Triggered Subsystem

Simulink Function Name

Input Args

Output Args

Simulink Caller Fcn
Service Connector Name

27

Create Simulink Behavior Model for Main Application Component
Created skeleton modelOriginal Model

Process:

• Copy/paste parts from original

model that we are keeping

• Alter parts that represent the

client / caller functions

28

Create Simulink Behavior Model for Main Application Component

Transform this shell model to capture original intent

Original Model

29

Create Simulink Behavior Model for Main Application Component

New Simulink behavior model that captures

Application logic and Service Call outs

Original Model

30

Create Simulink Behavior Model for Main Application Component

New Simulink behavior model that captures

Application logic and Service Call outs

Call out to Service Components

31

Create Simulink Behavior Model for Main Application Component

New Simulink behavior model that captures

Application logic and Service Call outs

Original Logic that we left alone

32

Create Simulink Behavior Model for Main Application Component

New Simulink behavior model that captures

Application logic and Service Call outs
Call out to Service Component

33

End refactoring process with Baseline Tests that pass

Tests Passed After Model Modifications

Very Important: Apply original model tests such

as to prove out that functionality remains

unchanged

34

Generate C++ code that is agnostic to any platform

PreAlgoFcn Body

Call out to

AccelPdlTrqReq_Srv

Service Function

Application Component

35

Generate C++ code that is agnostic to any platform

Actual Service Function

Service Component

36

AP: Generate C++ Code for Adaptive AUTOSAR Platform

PreAlgoFcn Body

Application Component

37

AP: Generate C++ Code for Adaptive AUTOSAR Platform

Call out to

AccelPdlTrqReq_Srv

Service Function

Application Component

38

AP: Generate C++ Code for Adaptive AUTOSAR Platform

Main.cpp / Application

Application Component

39

AP: Generate C++ Code for Adaptive AUTOSAR Platform

Main.cpp / Application

Main.cpp / Application

Adding tasks for Main

Application executor

Application Component

40

AP: Generate C++ Code for Adaptive AUTOSAR Platform

Actual Service Function

Service Component

41

AP: Generate C++ Code for Adaptive AUTOSAR Platform

Main.cpp / Service

Service Component

42

AP: Generate C++ Code for Adaptive AUTOSAR Platform

Main.cpp / Service

Adding Service to

executor

Service Component

43

Key Take Aways

▪ We have the tools to help move to Service Oriented Architectures (SOA)

▪ We can generate C++ code for SOA based components

▪ We are going to show you a lot of information in this presentation

▪ We are here to help so please engage with us in your SOA type projects

44

MathWorks Resources Where can I find more information ?

Using Model-Based Design to

Develop SOA Applications for In-

Vehicle OS

Service-Oriented Arbitration of ADAS

Features with Model-Based DesignSolutions Page: Software Architecture

Solutions Page: Software-Defined Vehicle

What Is Service-Oriented

Architecture (SOA)?

https://www.mathworks.com/videos/using-model-based-design-to-develop-soa-applications-for-in-vehicle-os-1683546563196.html?s_tid=srchtitle_site_search_1_zeekr
https://www.mathworks.com/videos/using-model-based-design-to-develop-soa-applications-for-in-vehicle-os-1683546563196.html?s_tid=srchtitle_site_search_1_zeekr
https://www.mathworks.com/videos/using-model-based-design-to-develop-soa-applications-for-in-vehicle-os-1683546563196.html?s_tid=srchtitle_site_search_1_zeekr
https://www.mathworks.com/videos/service-oriented-arbitration-of-adas-features-with-model-based-design-1691431416205.html
https://www.mathworks.com/videos/service-oriented-arbitration-of-adas-features-with-model-based-design-1691431416205.html
https://www.mathworks.com/solutions/software-architectures.html
https://www.mathworks.com/solutions/automotive/software-defined-vehicle.html
https://www.mathworks.com/discovery/soa.html
https://www.mathworks.com/discovery/soa.html

45

Training and Consulting Services Where can I get more help ?

System Composer Course Details

Embedded Coder Course Details

System Composer Onramp

https://www.mathworks.com/learn/training/system-composer-for-architecture-modeling.html
https://www.mathworks.com/learn/training/embedded-coder-for-production-code-generation.html
https://matlabacademy.mathworks.com/details/system-composer-onramp/orsc

46

Training and Consulting Services

Classic AUTOSAR Course Details

Where can I get more help ?

AUTOSAR Adaptive Platform Jumpstart Course Details

https://www.mathworks.com/learn/training/code-generation-for-classic-autosar-software-components.html
https://content.mathworks.com/viewer/6622c0b239afb0aba1341150

47

Training and Consulting Services

https://www.mathworks.com/services/consulting/contact.html

Where can I get more help ?

https://www.mathworks.com/services/consulting/contact.html

48

Technical Workshop on this topic – June 20th 1:30 to 3:30 PM EDT

Technical Workshop: Migration of a Monolithic Algorithm to Service-Oriented Architecture

Date & Time: June 20, 1:30PM – 3:30PM EDT

Overview: 2-hour interactive workshop at our Novi office to take a deep dive into the process of breaking apart a
monolithic algorithm into services that can be reused.

If you have questions, you can reach out to me

Mark Danielsen

mdaniels@mathworks.com

49

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc.

See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may

be trademarks or registered trademarks of their respective holders.

Thank you

	Slide 0
	Slide 1: An Example of Service Oriented Architectures
	Slide 2: An Example of Service Oriented Architectures
	Slide 3: Key Take Aways
	Slide 4: Challenge Statement and Project Benefits
	Slide 5
	Slide 6: Trend: Automakers are embracing Software Oriented Architectures and Standards
	Slide 7: Process of Decomposition to Composition
	Slide 8: Reference to Potential Guiding Principles
	Slide 9: The Models that we are going to work on come from the second presentation that I referenced
	Slide 10: Start with a Baseline Model with tests that pass
	Slide 11: Based on Model Functions decide what will be the main app and what will be Services
	Slide 12: Based on Model Functions decide what will be the main app and what will be Services
	Slide 13: New System Composer Onramp Training
	Slide 14: Partition Algorithm Model Into Smaller parts with Service Interface
	Slide 15: Partition Algorithm Model Into Smaller parts with Service Interface
	Slide 16: Partition Algorithm Model Into Smaller parts with Service Interface
	Slide 17: Partition Algorithm Model Into Smaller parts with Service Interface
	Slide 18: Define Client Server Interfaces
	Slide 19: Define Client Server Interfaces
	Slide 20: Create Simulink Behavior Model for Service Component
	Slide 21: Create Simulink Behavior Model for Service Component
	Slide 22: Create Simulink Behavior Model for Service Component
	Slide 23: Create Simulink Behavior Model for Service Component
	Slide 24: Create Simulink Behavior Model for Main Application Component
	Slide 25: Create Simulink Behavior Model for Main Application Component
	Slide 26: Create Simulink Behavior Model for Main Application Component
	Slide 27: Create Simulink Behavior Model for Main Application Component
	Slide 28: Create Simulink Behavior Model for Main Application Component
	Slide 29: Create Simulink Behavior Model for Main Application Component
	Slide 30: Create Simulink Behavior Model for Main Application Component
	Slide 31: Create Simulink Behavior Model for Main Application Component
	Slide 32: Create Simulink Behavior Model for Main Application Component
	Slide 33: End refactoring process with Baseline Tests that pass
	Slide 34: Generate C++ code that is agnostic to any platform
	Slide 35: Generate C++ code that is agnostic to any platform
	Slide 36: AP: Generate C++ Code for Adaptive AUTOSAR Platform
	Slide 37: AP: Generate C++ Code for Adaptive AUTOSAR Platform
	Slide 38: AP: Generate C++ Code for Adaptive AUTOSAR Platform
	Slide 39: AP: Generate C++ Code for Adaptive AUTOSAR Platform
	Slide 40: AP: Generate C++ Code for Adaptive AUTOSAR Platform
	Slide 41: AP: Generate C++ Code for Adaptive AUTOSAR Platform
	Slide 42: AP: Generate C++ Code for Adaptive AUTOSAR Platform
	Slide 43: Key Take Aways
	Slide 44: MathWorks Resources
	Slide 45: Training and Consulting Services
	Slide 46: Training and Consulting Services
	Slide 47: Training and Consulting Services
	Slide 48: Technical Workshop on this topic – June 20th 1:30 to 3:30 PM EDT
	Slide 49

