MathWorks **AUTOMOTIVE CONFERENCE 2024** North America

Deep Learning–Based Reduced Order Models for Electric Motors

Shyam P. Keshavmurthy, PhD, MathWorks

Motivation

- EV's rely on PMSM motors as their Main Traction Device
- Temperature Excursions in these Motors leads to loss of Torque efficiency and eventual failures
- Need test these devices over possible Thermal Regimes
- Dyno testing is costly and can lead to degraded devices
- Simulation is a must, but faster simulations are essential and Virtual Sensors are bonus

Reduced Order Modeling

What

- Techniques to reduce the computational complexity of a computer model
- Provide reduced, but acceptable fidelity

Why

- Enable simulation of FEA models in Simulink
- Perform hardware-in-the-loop testing
- Develop virtual sensors, Digital twins
- Perform control design
- Enable desktop simulations for orders-ofmagnitude longer timescales

High-fidelity model

Reduced-Order Model (ROM)

Increase Simulation Speed With Reduced Order Modeling

		·,····												2	NT.			-
Live Editor - C-	9hyams_OldPC\MATLA8\Projects\9	mogateOL\Code\Th	ermal_Modeling_cf	a PMSM_with_Neur	ral_Networks.mix									()	PAISMSim			← → PMSMSim.cpp
Exercise_Amb	We have a big .c.	with Newal New v file with m	neasuremei	otbledaresults_m nt data from	different expe	riments.											0	File is too large
2 3 4 5	clear tt=readtable head(tt)	"\data\ \			ata.csv");									8				
	ambient	coolant	u_d	u_q	motor_speed	torque	i_d	i_q 	рп 	stator_yoke	stator_tooth	stator_winding	profile_id					
	-0.75214	-1.1184	0.32794	-1.2979	-1.2224	-0.25018	1.0296	-0.24586	-2.5221	-1,8314	-2.0661	-2.018	4					
	-0.77126	-1.117	0.32966	-1.2977	-1.2224	-0.24913	1.0295	-0.24583	-2.5224	-1.831	-2.0649	-2.0176	4		N			
	-0.78289	-1.116/	0.332// A 3227	-1.3018	-1.2224	-0.24943	1.0294	-0.24582	-2.5227	-1.8384	-2.0641	-2.01/3	4		50			
	-0.77494	-1.1168	0.33571	-1.3019	-1.2224	-0.24804	1.0328	-0.24093	-2.5210	-1.8305	-2.0031	-2.01/0	4					
	-0.76294	-1.117	0.3349	-1,303	-1.2224	-0.2482	1.031	-0.24634	-2.5222	-1.8319	-2.0625	-2.0179	4					
	-0.74923	-1.1162	0.33501	-1.3021	-1.2224	-0.24791	1.0305	-0.24616	-2.5225	-1.833	-2.0621	-2.0172						
	-0.73845	-1.114	0.33626	-1.3052	-1.2224	-0.24832	1.0301	-0.24603	-2.5228	-1.8322	-2.062	-2.0172						
	The following m	easuremen	ts are our	inputs:											petichanal production \$2000 PlaSMarp StarTeeh T			
	 Ambient Coolant 	lemperature emperature	e												DL-PMSMmodel Statutions_			
	 Motor Va 	tage (dq-Fr	ame)												Winding T 50			
	Motor Cu	rrent (da-Fr	ame)															
		(-1.													15 + -			Task Profiling Summary
																		Section Maximu.
6	profile_id=t	.profile_	id;															ntoize 33313.805
7	tt_data=[tt(,1:5) tt(:,7:8)];															terminate 183.80952
8																		4
9	tt_data.ambi	ent=movavg	g(tt_data.	ambient,	simple',100));												JASHSLIN. COD LA 1
10	tt_data.ambi	nt=tt_dat	a.ambient	;;										6				Profiling details 🕤 🔿
														1				Code Execution Profiling
														0	aprodic Weiter		® ×	To view execution
	We want to pred	ict the follo	owing value	es:											A 2 C watch bills (C watch street, or in And		10.52 AM: Simulation, 1 + 0 0 A 1 0 9	une neuros.
	2 - 2000-0000														e or a models built (a models already up to bece) Build duration: Wh Bm 5.5494s		·	 For a profiled
	 Permane 	nt Magnet T	emperature	9											- Simulation			component,
	 Stator Yo 	ke Tempera	ture												mar Presering to start SIL simulation			ciscit a blue- shaded
	 Stator To 	oth Tempera	ature												### Skipping makefile generation and complication because Ci(Shyama Old#C(WATLAB)Projects/SorrogateO.(Code/PROSSin_get_thusil)PROSSin.exe is up to date			block.
	States M	nding Tomo	aratura												man Application strooped			 For top- model make
	• Statul W	nully relie	oraturo												HTT Stopping Lik simulation for component: PRUNCia	View Tuerring	1575	EredQe
														y .				racuses

Common Challenges in Operationalizing Models

High fidelity models, such as ones from 3rd party FEA tools, are too slow for system level simulation and HIL testing.

Creating a ROM that produces desired results in terms of speed, accuracy, interpretability, etc.

Integrating AI into Model-Based Design (Focus on Subsystem Models)

Al-driven system design

Data Preparation

Data cleansing and u lu lu preparation

Model design and tuning

AI Modeling

Integration with complex systems

Simulation & Test

Ţ

Embedded devices

Enterprise systems

Human insight

Simulationgenerated data

Interoperability

→ System simulation

Edge, cloud, desktop

Al-driven system design

Data Source

Deep Residual Convolutional and Recurrent Neural Networks for Temperature Estimation in Permanent Magnet Synchronous Motors

Wilhelm Kirchgässner Department of Power Electronics and Electrical Drives Paderborn University 33095 Paderborn, Germany kirchgaessner@lea.uni-paderborn.de Oliver Wallscheid Department of Power Electronics and Electrical Drives Paderborn University 33095 Paderborn, Germany wallscheid@lea.uni-paderborn.de Joachim Böcker Department of Power Electronics and Electrical Drives Paderborn University 33095 Paderborn, Germany boecker@lea.uni-paderborn.de

Abstract-Most traction drive applications using permanent magnet synchronous motors (PMSMs) lack accurate temperature monitoring capabilities so that safe operation is ensured through expensive, oversized materials at the cost of its effective utilization. Classic thermal modeling is conducted with e.g. lumped-parameter thermal networks (LPTNs), which help to estimate internal component temperatures rather precisely but also require expertise in choosing model parameters and lack physical interpretability as soon as their degrees of freedom are curtailed in order to meet the real-time requirement. In this work, deep recurrent and convolutional neural networks with residual connections are empirically evaluated for their feasibility on the sequence learning task of predicting latent highdynamic temperatures inside PMSMs, which, to the authors' best knowledge, has not been elaborated in previous literature. In a highly utilized PMSM for electric vehicle applications, the temperature profile in the stator teeth, winding, and yoke as well as the rotor's permanent magnets are modeled while their ground precise thermal state, yet for the rotor part, it is technically and economically infeasible due to an electric motor's sophisticated internal structure and the difficult accessibility of the rotor. Stator temperature monitoring is realized with thermal sensors, but these are usually firmly embedded in the stator so that replacement is not an option, although sensor functionality deteriorates steadily. Since competitive pressure demands perpetual reduction of production costs, there is a commercial interest driving the investigation of sufficiently accurate real-time temperature estimation. In the last decades, various research efforts led to approaches that approximate the heat transfer process e.g. with equivalent circuit diagrams [2] called lumped-parameter thermal networks (LPTNs). This kind of model must forfeit physical interpretability of its structure and parameter values by significantly curtailing degrees of

E terre al line

Workflow – Data Preparation

Raw CSV Data

Additional Features

Sorted Data includes drive cycles of different lengths and Ambient Conditions, DOE of design space to cover edge cases Sorting helps to keep the mini-batch computation efficient with minimal padding

Profile Characteristics

Drive cycles on Torque-Speed plane

Al-driven system design

AI Modeling

Model design and tuning

Integration with complex systems

Simulation & Test

Hardware accelerated training

System simulation

→ System verification→ and validation

AI-Model Development

What Do we look in Training?

Testing Results on a long profile

All correlation values are about 0.99 and error distribution is unbiased hence model captures trend and Magnitude

Test Results for a short profile

All correlation values are about 0.99 and error distribution is unbiased hence model captures trend and Magnitude

Deployment to Simulink

MATLAB works with Python-based frameworks

Framework Interoperability bridges the gap between data science, engineering and production

17

AI Modeling

Simulation & Test

Deployment

Al-driven system design

Deployment

Embedded devices

Enterprise systems

Edge, cloud, desktop

Model compression reduces Model for Deployment (reduces learnable from 2M to 850 K)

Pruning convolutional neural networks Projection of deep neural networks

We'll take a closer look at the projection technique in today's workshop

Quantization of network weights to lower precision datatypes (bfloat16, int8)

Al Modeling

Simulation & Tes

Compressed Network

is for trainNetwork usage et adate: 17-Apr-2024 15:02:19			2M total learnables	13 0 A 0 layers warnings err	D rors	Analysis for dinetwork us Name: netProjected Analysis date: 17-Apr-2024 15:0			
	ANALYSIS RESULT	ANALYSIS RESULT							
sequenceinput	Name	Туре	Activations	Learnable Proper	State	sequencein			
Istm_full fc_2	1 sequenceinput Sequence input with 66 dimensi	Sequence Input	66(C) × 1(B) × 1(T)	-	-	listm_full fc_2			
lstm_1 fc_3 drop_1 drop1	2 Istm_full LSTM with 573 hidden units	LSTM	573(C) × 1(B) × 1(T)	InputWeig 2292 Recurrent 2292 Bias 2292	Hidd Cell	e lstm_1 ec_3 e drop_1 edrop			
leakylstm relua	3 Istm_1 LSTM with 191 hidden units	LSTM 191(C) ×	191(C) × 1(B) × 1(T)	InputWeigh… 764 ×… RecurrentW… 764 ×… Bias 764 ×…	Hidd Cell	eakyistm relux			
fo_1	4 drop_1 85% dropout	Dropout	191(C) × 1(B) × 1(T)	-	-	fc_1			
feX	5 leakyIstm Leaky ReLU with scale 0.02	Leaky ReLU	191(C) × 1(B) × 1(T)	-	-	feX			
PMSMtemp	6 fc_2 66 fully connected layer	Fully Connected	66(C) × 1(B) × 1(T)	Weights 66 × 66 Bias 66 × 1	-				
	7 fc_3 191 fully connected layer	Fully Connected	191(C) × 1(B) × 1(T)	Weights 191 × 66 Bias 191 × 1	-				
	8 drop1 75% dropout	Dropout	191(C) × 1(B) × 1(T)	-	-				
	9 relua Leaky ReLU with scale 0.25	Leaky ReLU	191(C) × 1(B) × 1(T)	-	-				
	10 addition1 Element-wise addition of 2 input	Addition	191(C) × 1(B) × 1(T)	-	-				
	11 fc_1 4 fully connected layer	Fully Connected	4(C) × 1(B) × 1(T)	Weights 4 × 191 Bias 4 × 1	-				
	12 fcX 4 fully connected layer	Fully Connected	4(C) × 1(B) × 1(T)	Weights 4 × 4 Bias 4 × 1	-				
	13 PMSMtemp	Regression Output	4(C) × 1(B) × 1(T)	-	-				

sis for dInetwork usage netProjected is date: 17-Apr-2024 15:02:39				73.8k 12 total learnables layers	0 A 0 warnings error	() DIS
	ANAL	YSIS RESULT				G
sequenceinput		Name	Туре	Activations	Learnable Proper	Stat
fo_2	1	sequenceinput Sequence input with 66 dimensions	Sequence Input	66(C) × 1(B) × 1(T)	-	-
fc_3	2	Istm_full Projected LSTM with 573 hidden units	Projected Layer	573(C) × 1(B) × 1(T)	Netw 1 dlnetw	-
• drop1	3	Istm_1 Projected LSTM with 191 hidden units	Projected Layer	191(C) × 1(B) × 1(T)	Netw 1 dlnetw	-
addition1	4	drop_1 85% dropout	Dropout	191(C) × 1(B) × 1(T)	-	-
• fc_1	5	leakyIstm Leaky ReLU with scale 0.02	Leaky ReLU	191(C) × 1(B) × 1(T)	-	-
fcX	6	fc_2 Projected fully connected layer with outp	Projected Layer	66(C) × 1(B) × 1(T)	Netw 1 dlnetw	-
	7	fc_3 Projected fully connected layer with outp	Projected Layer	191(C) × 1(B) × 1(T)	Netw 1 dlnetw	-
	8	drop1 75% dropout	Dropout	191(C) × 1(B) × 1(T)	-	-
	9	relua Leaky ReLU with scale 0.25	Leaky ReLU	191(C) × 1(B) × 1(T)	-	-
	10	addition1 Element-wise addition of 2 inputs	Addition	191(C) × 1(B) × 1(T)	-	-
	11	fc_1 Projected fully connected layer with outp	Projected Layer	4(C) × 1(B) × 1(T)	Netw 1 dlnetw	-
	12	fcX Projected fully connected layer with outp	Projected Layer	4(C) × 1(B) × 1(T)	Netw 1 dlnetw	-

Original

Projected

Approximately 25X reduction in Size

Code Generation For HIL/SIL test

Web Browser - Code Generation F	leport											
🜩 📿 🗟 👫 🛛 Location:	ile:///C:/Shyams_OldPC/MATLAB/Projects/SurrogateDL/PMSMSim_grt_rtw/html/index.html		Code Generation Ren									
+		PMSMSim 🔻	t t									
Content	Code Interface Report for PMSMSim											
Summary Subsystem Report	Table of Contents											
Code	Inports Outports Interface Parameters											
✓ Model files PMSMSim.cpp DMCMC/~ b	Data Stores Entry-Point Functions											
PMSMSim_n PMSMSim_private.h	Function: PMSMSim_initialize											
PMSMSim_types.h Utility files	Prototype	void PMSMSim_initialize(void)										
builtin_typeid_types.h	Description	Initialization entry point of generated code										
multiword_types.h	Timing	Must be called exactly once										
rtGetInf.cpp	Arguments	None										
rtGetInf.h	Return value	None										
rtGetNaN.cpp rtGetNaN.h	Header file	PMSMSim.h										
rt_nonfinite.cpp	Function: PMSMSim_step											
rtwtypes.h	Prototype	void PMSMSim_step(void)										
✓ Interface files	Description	Output entry point of generated code										
rtmodel.h	Timing	Must be called periodically, every 1 second										
✓ Other files	Arguments	None										
rt_logging.c	Return value	None										
	Header file	PMSMSim.h										
	Function: PMSMSIm_terminate											
	Prototype	void PMSMSim_terminate(void)										
	Description	Termination entry point of generated code										
	Timing	Must be called exactly once										
	Arguments	None										
	Return value	None										
	Inports	rwswsm.n										
	No Inports in model.											
	Outports											
	No Outports in model.											
	Interface Parameters											
	No interface/tunable parameters in model.											
	Data Stores											
	No data stores in the model; note that this report lists only data stores with non-auto storage class and global data stores											
	v											

Examine Generated Code

/an

yams_Old	PC\rtw\ent_main.cpp - + X C\Shyams_OldPC\rtw\PMSMSim.cpp
28	// your application needs. This example simply sets an error status in the
29	// real-time model and returns from rt_OneStep.
30	.//
31	void rt_OneStep(void);
32 🗄	void rt_OneStep(void)
33	
34	<pre>static boolean_T OverrunFlag(taise };</pre>
35	
36	// Jisable interrupts nere
20	// Chark for avanue
30 0	
40	i rtmsetrorstatus(PMSMSim Obi.eetRTM(). "Overrun"):
41	return:
42	
43	
44	OverrunFlag = true;
45	
46	// Save FPU context here (if necessary)
47	// Re-enaled limit or interrupt here
4ð 40	1) Ser moner tubures usual
50	// Sten the model
51	PMSMSim Obj.step():
52	
53	// Get model outputs here
54	
55	// Indicate task complete
56	OverrunFlag = false;
57	
58 -	// Disable interrupts here
59	// kestore reu context mere (if necessary)
61	// chaote interrupts here
62	.1
63 E	
64	// The example main function illustrates what is required by your
65	// application code to initialize, execute, and terminate the generated code.
66	// Attaching rt_OneStep to a real-time clock is target specific. This example
67	// illustrates how you do this relative to initializing the model.
68	
69 E	<pre>int_Tmain(int_T argc, const char *argv[])</pre>
70	{ // lourad accumants
72	(vid) discrete:
73	(void)(argv);
74	
75	// Initialize model
76	<pre>PMSMSim_Obj.initialize();</pre>
77	
78	// Attach rt_OneStep to a timer or interrupt service routine with
/9	// period is seconds (base rate of the model) here.
81	// Ine call syntax for Pr_Onestep 1s
82	// rt OneSten():
83	
84	printf("Warning: The simulation will run forever. "
85	"Generated ERT main won't simulate model step behavior. "
86	"To change this behavior select the 'MAT-file logging' option.\n");
87	fflush((nullptr));
88 E	<pre>swhile (rtmGetErrorStatus(PMSMSim_Obj.getRTM()) == (nullptr)) {</pre>
89	// Perform application tasks here
90	
92	// Terminate mode]
93	PMSNSim Obi_terminate():

Key takeaways

Conclusions

- MathWorks Tools Makes Data to Digital Twins(ROM) workflow easy
- An e-Motor ROM predicts e-Motor's all internal temperatures with similar trends and magnitudes as real data.
- ROM incorporation into Simulink with built-in infrastructure allows SIL/HIL testing faster and easier

MathWorks **AUTOMOTIVE CONFERENCE 2024** North America

Thank you

© 2024 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.