

Case Study: Highway Lane Following + Lane Change

Design and test decision making, path planning, and control modules in traffic scenarios

Application Engineering, MathWorks

Shusen Zhang

Application Engineering, MathWorks

SAE Levels of Driving Automation vs. Automated Driving Technologies

Traffic Jam Assist with ACC and Lane Following Control

Automated Driving ToolboxTM

R2017b

ACC (Longitudinal Control)

R2018a

Lane Centering (Lateral Control)

Traffic Jam Assist

(Longitudinal + Lateral Control)

Auto Pilot: Lane Following plus Lane Change

Automated Driving Toolbox™ R2018b

Traffic Jam Assist

(Longitudinal + Lateral Control)

Baseline example

Auto Lane Change

(LC Decision Logic + Planning)

Auto Pilot

(Lane Following + Lane Change)

Example for Single Lane Change in dense traffic conditions

Case Study for Lane Following plus Lane Change

Design lane following + lane change controller

- Review baseline LF example
- Design sensor configuration
- Design additional MIO detectors
- Design safety zone calculation
- Design lane change logic
- Design trajectory planner

Automate regression testing

- Define assessment metrics
- Add predefined scenarios
- Run Simulink test

Test robustness with traffic agents

- Specify driver logic for traffic agents
- Randomize scenarios using traffic agents
- Identify and assess unexpected behavior

Learn about developing a lane following controller

Lane Following Control with Sensor Fusion

- Specify scenario and sensors
- Design lateral (lane keeping) and longitudinal (lane spacing) model predictive controllers
- Integrate sensor fusion
- Generate C/C++ code
- Test with software in the loop (SIL) simulation

Model Predictive Control Toolbox[™]
Automated Driving Toolbox[™]
Embedded Coder®

Review lane following test bench model architecture

Review lane following test bench model architecture

Review lane following test bench model architecture

System requirements for lane change

Intelligent transport systems - Lane change decision aid systems (LCDAS)

Adjacent zones for Blind Spot Detection

Typically implemented with **Short Range Radar**

Rear zones for closing vehicle warning

Typically implemented with Mid Range Radar

Explore sensor placement with Driving Scenario Designer

Review sensor configuration for lane following example

- SRR: Short-Range Radar
- MRR: Mid-Range Radar
- LRR: Long-Range Radar

Add rear looking sensors to support left lane change

- SRR: Short-Range Radar
- MRR: Mid-Range Radar
- LRR: Long-Range Radar

Overall sensor configuration for lane following plus lane change

Review sensor models for lane following controller

Add sensor models for lane change

Identify Most Important Objects (MIO) to detect

- Lane following
 - one EgoFront MIO is enough
- Lane change
 - needs more MIOs surrounding ego car

Review baseline MIO detector architecture for lane following controller

Add MIO detectors for lane change

Lane following is **UNSafe**if ego front MIO is detected
within the safety zone

Longitudinal safe distance

- = travel distance during response time(ρ)
- + braking distance with a_{brake}

 TTC_{FCW} : Time-to-Contact

Visualize safety zones

Visualize safety zones and trajectory

Create custom visualization for safety zones and trajectory

 The MATLAB System block brings existing System objects (based on matlab.System) into Simulink[®]

Create birds eye plot with utilities from Automated Driving Toolbox

```
→ actors

→ egoActor

→ lanes PlotLaneChangeStatus

→ status

→ refPath

Plot Lane Change Status
```

```
% create birds eye plot
obj.BEP = birdsEyePlot('Parent', hax,...
'XLimits', [-60, 60],...
'YLimits', [-20, 20]);
```

```
% create lane plotter
obj.LaneBoundaryPlotter = laneBoundaryPlotter(obj.BEP,...
'DisplayName','Lane boundaries');

% create outline plotter for target actors
obj.OutlinePlotter = outlinePlotter(obj.BEP);
```


Plot safety zones and trajectory with MATLAB

```
→ actors

→ egoActor

→ lanes PlotLaneChangeStatus

→ status

→ refPath
```

Plot Lane Change Status

```
% create patches for safety zones
obj.ZoneFront = patch(hax,0,0,[0 0 0]);
set(obj.ZoneFront,'XData',[],'YData',[],...
'FaceColor','green','FaceAlpha',0.1);
```

```
% create line for trajectory path
obj.LCPath = line(hax, 0, 0, ...
    'Color', 'blue', ...
    'LineWidth', 2, ...
    'LineStyle', '-');
```


40

Lane change decision logic and planning

Design lane change decision logic using Stateflow™

Design lane change planning

Generate trajectory

Quintic polynomial

$$s(t) = a_5 t^5 + a_4 t^4 + a_3 t^3 + a_2 t^2 + a_1 t + a_0$$

$$\dot{s}(t) = 5a_5 t^4 + 4a_4 t^3 + 3a_3 t^2 + 2a_2 t + a_1$$

$$\ddot{s}(t) = 20a_5 t^3 + 12a_4 t^2 + 6a_3 t + 2a_2$$
 where $s = longitudinal$ or lateral distance

Start boundary conditions

$$a_0 = s_{start}$$

$$a_1 = \dot{s}_{start}$$

$$2a_2 = \ddot{s}_{start}$$

End boundary conditions

$$a_5 t_f^5 + a_4 t_f^4 + a_3 t_f^3 + a_2 t_f^2 + a_1 t_f + a_0 = s_{end}$$

$$5a_5 t_f^4 + 4a_4 t_f^3 + 3a_3 t_f^2 + 2a_2 t_f + a_1 = \dot{s}_{end}$$

$$20a_5 t_f^3 + 12a_4 t_f^2 + 6a_3 t_f + 2a_2 = \ddot{s}_{end}$$

Example of trajectory generation for lane change

Longitudinal trajectory

Lateral trajectory

Calculate deviations from reference point

Case Study for Lane Following plus Lane Change

Design lane following + lane change controller

- Review baseline LF example
- Design sensor configuration
- Design additional MIO detectors
- Design safety zone calculation
- Design lane change logic
- Design trajectory planner

Automate regression testing

- Define assessment metrics
- Add predefined scenarios
- Run Simulink test

Test robustness with traffic agents

- Specify driver logic for traffic agents
- Randomize scenarios using traffic agents
- Identify and assess unexpected behavior

Manage testing against scenarios

HW : Headway

HWT: Headway time

v_set: set velocity for ego car

Create test scenarios

No Test Name	Test Description	Host car	Lead car
1 01_SlowMoving	Passing for slow moving lead car	initial velocity = 20m/s	constant velocity 10m/s
		HWT = 6.5sec (HW = 130m)	
	Slow moving	v_set = 20m/s	

HW: Headway

-60 20

10

0

Y (m)

-10

HWT: Headway time

-20

HW : Headway

HWT: Headway time

v_set: set velocity for ego car

Create test scenarios

No Test Name	Test Description	Host car	Lead car
7 07_RightLaneChange	Passing for slow moving lead car to right lane (4) (3) Slow moving	initial velocity = 20m/s HWT = 6.5sec (HW = 130m) v_set = 20m/s	constant velocity = 10m/s

Review report generated by Test Manager test cases

Report Generated by Test Manager

Title: Lane Following + Lane Change Con

trol Test

Author: Seo-Wook Park

Date: 04-Apr-2019 12:03:36

Test Environment

Platform: PCWIN64 MATLAB: (R2019a)

TestReport

Name	Outcome	Duration (Seconds)
LCTestCases	70	2059
StraightPath	70	2059
■ 01 SlowMoving	0	304
02 SlowMovingWithPassingCar	0	224
■ <u>03 DisabledCar</u>	0	330
■ 04 CutInWithBrake	0	235
■ 05 SingleLaneChange	0	314
■ 06 DoubleLaneChange	0	420
07 RightLaneChange	0	228

Case Study for Lane Following plus Lane Change

Design lane following + lane change controller

- Review baseline LF example
- Design sensor configuration
- Design additional MIO detectors
- Design safety zone calculation
- Design lane change logic
- Design trajectory planner

Automate regression testing

- Define assessment metrics
- Add predefined scenarios
- Run Simulink test

Test robustness with traffic agents

- Specify driver logic for traffic agents
- Randomize scenarios using traffic agents
- Identify and assess unexpected behavior

Assign traffic agents to all vehicles except ego car

Simulate interaction between traffic agents

Proof of Concept

- Driver decision logic implemented by Stateflow™
- Rules are based on ground truths
- Integrate into cuboid driving scenario
- Visualize and debug

Scenario Reader

Vehicle dynamics

Acceleration

Steering Angle

(Acceleration)

Ego car is controlled by the closed-loop controller including ego vehicle dynamics

XY Positions

XY Velocities

Yaw Angle

Yaw Rate

Longitudinal velocity

Vehicle Dynamics

Scenario Reader **Block**

Clock

System Clock

Implement driver logic for traffic agent using Stateflow™

Simulate with traffic agents

Analyze results for near collision situation

Recap: Case Study for Lane Following plus Lane Change

Design lane following + lane change controller

- Review baseline LF example
- Design sensor configuration
- Design additional MIO detectors
- Design safety zone calculation
- Design lane change logic
- Design trajectory planner

Automate regression testing

- Define assessment metrics
- Add predefined scenarios
- Run Simulink test

Test robustness with traffic agents

- Specify driver logic for traffic agents
- Randomize scenarios using traffic agents
- Identify and assess unexpected behavior

Contact us to learn more

Would you like to discuss any of these topics in more detail?

Contact your local team or reach out to me at spark@mathworks.com