Unconstrained minimization.

Here we are searching for the minimum (instead of the zero) of a function , where x are n-independent variables. There are two classes of algorithm competing for this goal, differing by whether they require the calculation of derivatives (1st only or 1st and 2nd) or not. We will start by considering the methods that go under the general definition of conjugate gradients. These methods use different techniques for constructing conjugate directions. The so-called zero-order methods work with only; the first-order methods utilize both and ; the second-order methods utilize , , and . The first-order and second-order methods are computationally more efficient, but are possible only when or both and are available.

Zero order methods.

Line search. A line search is a method to find the minimum of a function starting from a point and moving along a line parallel to a given search vector, , within some lower and upper bounds, lb and ub; the method finds the next iterate of the form:

where denotes the current iterate, is the search direction, and is a scalar parameter.

[image:]How do we find the minimum of a function f(x) of a single variable x, with the constraints ? A plot of such a function could show a global minimum in between the boundaries and a local minimum at one of the boundaries. For example, consider the function, for :

clear, clc, close all
f = @(x) x.^3 - 3*x.^2 - 12*x
xvec = [-3:0.1:6]';yvec = f(xvec);
plot(xvec,yvec,'-r'); xlabel('x');ylabel('f(x)');grid on;hold on

In this case finding the global minimum is straightforward as all stationary points can be located by finding the roots of , and each constraint boundary can be checked for a global minimum by evaluating f(lb) and f(ub). However, the function f may be difficult or impossible to differentiate analytically, as it would be the case for a complex algorithm.

The line search method attempts to decrease the objective function along the line in two steps:

1. The bracketing phase determines the range of points on the line to be searched. The bracket corresponds to an interval, typically {a b}, specifying the range of values of . We start with an initial value f(x0) and we calculate additional values f(x1), f(x2), f(x3), until we reach the point f(xn), where f(x) increases for the first time. In this process, it is a good idea to use a step that increase constantly (i.e., , with c = 1.6180033989… = 1 + R, where R is the Golden ratio, see below) in order to reach the minimum quickly, even if the resulting bracket is wide. In the end, the minimum point is bracketed in the interval (xn-2, xn).

2. The sectioning phase narrows the subinterval progressively to identify the function minimum within an error tolerance. Suppose the minimum has been bracketed in the interval {a b} of length h. We first evaluate the function at:

 , .

If the minimum lies in the interval:

otherwise in:

Assuming that we set:

which yields a new interval:

[image:]We only need to evaluate:

and we are ready for the next iteration.

With respect to the value of , it’s important to notice that the distance:

in the top diagram is the same as the distance:

in the bottom diagram, leading to:

substituting we obtain:

(
(

which can easily be solved for :
p = [-1 -1 1];
r = roots(p)

leading to a positive solution , which is the value of the Golden Ratio. This number was known to the ancient Greeks as the ratio of the sides of the golden rectangle, the rectangle with the most pleasing proportions.
[image:]
This line search algorithm is implemented in the function line_search. We are now ready to complete the identification of the minimum for :
x = 2;
lb = -3;
ub = 6;

[x_min,f_min] = line_search(f,x,-3,6)
x_min = 3.2361
f_min = -36.3607

vline(x_min,'b--')

Conjugate Directions (Powell method). First, we recall that the Taylor series expansion of a function of a single variable about the point is the infinite series:

This series is meaningful only if all the derivatives of exist at and the series converges. In general, convergence occurs only if is sufficiently close to , that is if:

 where is the radius of convergence of the series.

In the Powell method we apply this expansion to a function of several variables, and is now a vector. Regardless of the form of we can find its quadratic approximation in the neighborhood of by truncating the Taylor series expansion of about .

where is the gradient (vector of 1st derivatives) of at , and is the Hessian (matrix of 2nd derivatives) of at . Taking leads to the quadratic approximation of our original function , which we can write as:

which is the general matrix representation of a quadratic surface.
[image:]
b = [5 3]';
H = [25 2;1 20];
H = H'*H;
eig(H)
x = [-100:2:100;-100:2:100];
[m,n] = size(x);

func = @(x) 10 + b'*x +1/2*x'*H*x

for i = 1:n
 for j = 1:n
 f(i,j) = func([x(1,i);x(2,j)]);
 end
end

[X,Y] = meshgrid(x(1,:),x(2,:));
meshc(X,Y,f)

Differentiating with respect to we obtain:

where again is the gradient of at . Given an initial point , we can carry out a line search in the direction of a unit vector and move by a distance s from to a new point , such that the value of is the smallest possible along that direction. As a result, the gradient changes by :

If is perpendicular to a unit vector such that:

we say that and are mutually conjugate or H normal to each other. The implication is that once we have minimized in the direction of we can move along without ruining the previous minimization. Start with point x0

Choose vectors v1 and v2. The usual choices
are unit vectors in the x1 and x2 directions.

Find the distance s1 that minimizes f(x0 + s1v1).
The new point is x1 = x0 + s1v1

Find the distance s2 that minimizes f(x1 + s2v2).
The new point is x2 = x1 + s2v2

The last search direction is v3 = x2 − x0.

Find the distance s3 that minimizes f(x0 + s3v3).
The new point is x3 = x0 + s3v3

Choose new vectors v1 and v2:
a. Discard old v1
b. v2 becomes v1.
c. v3 becomes v2.
d. x3 becomes x0

For a perfectly quadratic function of n-independent variables it is possible to construct n-conjugate directions, and it would take n-cycles of n+1 line searches to reach the minimum.

The following is how the Powell method works to find the minimum on a 2-dimensional surface.

The described cycle is repeated twice: the figure shows the two cycles superimposed on the contour map of a quadratic surface. The first cycle starts at point x0 and ends at x3. The second cycle brings to the minimum x6. The directions x0x3 and x3x6 are mutually conjugate.

[bookmark: _GoBack]In practice, in order to obtain an efficient progression towards the minimum, experience has shown that, rather than discarding at the end of each cycle, it is better to discard the direction that resulted in the largest decrease of , as this is likely to be close to the 1st direction added in the next cycle. As a result of the change, the search directions are no longer strictly conjugate, and finding the minimum of usually takes more than n cycles.

It is important to realize that the Powell method does not require the calculation of derivatives: a function based on this method is shown below. It calls the function line_search (see above) to find the minimum in each line search:

function [x_min,f_min,niter] = powell(f,x,h,tol,maxiter)
% f = handle to the function that returns f(x).
% x = starting point as a column vector.
% h = initial increment for the line search.
% tol = error tolerance on x.

if nargin < 5; maxiter = 1000; end
if nargin < 4; tol = 1.0e-8; end
if nargin < 3; h = 0.05; end

ndim = length(x); 	% Number of dimensions
V = eye(ndim); 	% Matrix containing the unit vectors in the search directions
dcr_f = zeros(ndim,1); 	% Vector storing the decreases in f(x)

x_old = 0;
niter = 0;

while norm((x-x_old)/ndim) > tol

 if niter >= maxiter
 disp('Warning: Powell did not converge in the maximum ');
 disp('number of iterations. Result may be inaccurate.');
 return
 end
 niter = niter + 1;

 x_old = x;
 f_old = f(x_old);

 % Here we do a line search for each dimension.
 for n = 1:ndim
 v = V(:,n);
 % In the line search we scan on the multiplier s of the unit vector
 % in the search direction.
 [s,f_min] = line_search(@(s) f(x+s*v),0.0,-Inf,Inf,h);
 dcr_f(n) = f_old - f_min;
 f_old = f_min;
 x = x + s*v;
 end

 % A final line search completes the iteration.
 v = x - x_old;
 [s,f_min] = line_search(@(s) f(x+s*v),0.0,-Inf,Inf,h);
 x = x + s*v;

 % Here we update the search directions discarding the direction that
 % produces the biggest decrease in f(x).
 [~,max_ind] = max(dcr_f);
 for n = max_ind:ndim-1
 V(:,n) = V(:,n+1);
 end
 V(:,ndim) = v;

 x_min = x;
end

end

Here we use powell to find the minimum of a quadratic function in 2 dimensions:
func = @(x) 10*x(1)^2 + 3*x(2)^2 -10*x(1)*x(2) + 2*x(1)
x = [1 1]’

[xmin,fmin,niter] = powell(func,x,0.01)

xmin = [-0.6000 -1.0000]
fmin = -0.6000
niter = 5

First order methods.

Conjugate Gradients (CG methods). We start again with a function that has a quadratic form. Given a direction v, with the Powell’s method n line minimizations are required to construct a single conjugate direction. First order methods can reduce the identification of each conjugate direction to a single line minimization.

We already introduced the Conjugate Gradients, CG, methods when we discussed the iterative solution of a system of linear equations:

where A (m x n) is symmetric and positive definite. We noticed how solving this system is the same as minimizing:

In fact, differentiating with respect to we obtain the gradient of :

and is at its minimum when (First Order Optimality Condition, FOC).

The CG method is guaranteed to converge to the solution:

in at most n iteration. The method can be particularly useful if the matrix is sparse (for example, left panel below), and thus there is no need to calculate its inverse , which is very dense (right panel below).

[image:]We start with an initial vector and compute a refined solution at each cycle:

 ... and so on

The step length is chosen so that minimizes in the search direction . This means that must tend to satisfy:

Introducing the residual:

and pre-multiplying both sides by we find :

We notice here that the expression derived for is the general optimizer for the selection of a step length in line search methods in which a quadratic function is minimized along the line .

The obvious choice for the search direction would be the steepest descent vector (the negative of the gradient):

However, while providing the correct result, this method converges very slowly (convergence order p = 1, see below), because consecutive searches tend to be in approximately the same direction. To avoid this problem, the conjugate gradient method uses a modified search direction:

The constant is chosen so that the two successive search directions are not interfering with each other; these directions are conjugate or A normal because:

Substituting for we obtain:

The following is a flowchart of the conjugate gradients algorithm (function conj_grad):

Start with any

Use the steepest descent as 1st step

Loop with k = 1 to n where n
is the number of variables.

If exit loop (convergence criterion = error tolerance is met)

The scheme can be further modified by noticing that:

since , . Moreover, given that we have:

 despite the fact that .

Start with any

Use the steepest descent as 1st step

Loop with k = 1 to n where n
is the number of variables.

If exit loop (convergence criterion = error tolerance is met)

This modified scheme is implemented in the function conj_grad_mod:

function [x,r,i] = conj_grad_mod(A,x,b,tol)

if nargin<4
 tol = 1e-9;
end

n = length(b);
r = b - A*x; s = r;

i = 0;
rtr = r'*r;

while norm(r) > tol
 i = i+1;
 As = A*s;
 alpha = rtr/(s'*As);
 x = x + alpha*s;
 r = r - alpha*As;
 rntrn = r'*r;
 beta = rntrn/rtr;
 s = r + beta*s;
 rtr = rntrn;
end
end

A = [2 3 1;3 1 1;1 1 2]; A = A'*A;
b = [3 2 1]';x0 = [0 0 0]'
[x,r,i] = conj_grad_mod(A,x0,b)

The modified scheme provides the core of the Fletcher–Reeves (FR) method for finding the minimum of a quadratic function in n iterations. Since and b are not known, the method requires the calculation of the gradient (thereby the classification as a 1st order method) of the function at each new point along the minimization. A flowchart of the algorithm is shown below:

Start with point

Use the steepest descent as 1st step

Loop with k = 1 to n where n
is the number of variables.

 Do a Line Search to find

If or | exit loop
(error tolerance is met)

FR gets its favorable convergence properties from the conjugacy of the search directions near the optimum. If we start “far” from the optimum, the algorithm does not necessarily gain anything from maintaining this conjugacy. The n-step convergence is only guaranteed when we start with a steepest-descent step, and the model is quadratic. Therefore, we can periodically restart the algorithm, by taking a steepest-descent step from the last identified minimum.

function [x_min,f_min,niter] = fletcher_reeves(f,x0,h,tolgrad,tolfun,tolx,nder)
% f = function to be minimized
% x0 = starting point.
% h = initial search increment.
% nder = type of derivative: [1] 1st forward [2] 2nd forward [3] central
% tolgrad = error tolerance on the gradient (default = 1.0e-4).
% tolfun = error tolerance on the function (default = 1.0e-6).
% tolx = error tolerance on the solution (default = 1.0e-6)
% niter = number of iterations

if nargin < 7; nder = 2; end
if nargin < 6; tolx = 1.0e-6; end
if nargin < 5; tolfun = 1.0e-6; end
if nargin < 4; tolgrad = 1.0e-4; end
if nargin < 3; h = 0.1; end

[f0,g0] = gradx(f,x0,nder);
r0 = -g0;
s0 = r0;
df = tolfun;dx = tolx;

niter = 0;
while (r0'*r0) >= tolgrad || abs(df) >= tolfun || (dx'*dx) >= tolx

 niter = niter + 1;
 [alpha,~] = line_search(@(alpha) f(x0+alpha*s0),0.0,-Inf,Inf,h);

 x_min = x0 + alpha*s0;
 [f_min,g1] = gradx(f,x_min,nder);
 r1 = -g1;

 beta = (r1'*r1)/(r0'*r0);
 s1 = r1 + beta*s0;
 dx = x_min-x0;df = f_min-f0;
 x0 = x_min;f0 = f_min;s0 = s1;r0 = r1;

end

end

Here is an example of a Fletcher-Reeves minimization with a quadratic function:

func = @(x) 10*x(1)^2 + 3*x(2)^2 -10*x(1)*x(2) + 2*x(1)
x = [1 1]'
[x_min,f_min,niter] = fletcher_reeves(func,x,0.01)
x_min = [-0.6000 -1.0000]
f_min = -0.6000
niter = 12
Second order methods.
Another Taylor series is the expansion of a function of a single variable about an arbitrary value of is:

The effect of truncating the series is of great practical importance. For example, keeping the first n+1 terms, we have:

The truncation error (sum of the truncated terms starting with the term including) is:

which is a concise way of saying that is of the order of , or behaves as .

In the second order methods we apply this expansion to a function of several variables, and is now a vector. Regardless of the form of we can find the quadratic approximation of its Taylor expansion about as:

where again the vector is the gradient of and (or) is the Hessian of .

In particular, we can consider as a unit vector in the direction of a possible line search that we intend to pursue to find the minimum of . The intuitive choice for is the steepest descent vector:

However, if the function is smooth enough, and we know the Hessian, we can select to be the so called ‘Newton’ direction. Since the minimum of is achieved when its 1st derivative is 0, we differentiate the RHS of the Taylor expansion with respect to and then set the result to zero:

As long as the Hessian is positive definite (and the rcond number >10E-14) the direction of search, , is always in a descent direction of . In fact, multiplying by we obtain:

If is positive definite so is , and , which means it decreases the magnitude of .

We notice here that the Newton direction is more expensive that the steepest descent direction because we must compute the Hessian and invert it. However, the order p of convergence (not to be confused with the search direction from above) of the steepest descent methods is linear (p=1). This is because, as we approach the minimum of , the value of changes according to:

(where k is the iteration number and is the point where attains its minimum), while the order of convergence of the Newton methods is quadratic (p=2):

In these limits must be a constant (thus, neither 0 nor), and if this constant exists it is called the rate of convergence (or more generally, the asymptotic error); p is the order of convergence. The following are some numerical examples.

Let . This is a case of sublinear convergence:

In this case, the rate of convergence is r = 1 and the order of convergence is p = 1.

clear x Q1 Q2 Q3

niter = 1000;
for k = 1:niter
x(k) = 1/k;
end

Q1 = abs(x(2:end))./(abs(x(1:end-1)).^0.5);
Q2 = abs(x(2:end))./(abs(x(1:end-1)).^1);
Q3 = abs(x(2:end))./(abs(x(1:end-1)).^2);

SubLinear_convergence = figure;set(gcf,'Unit','Normalized','Position',[0 0.4 0.6 0.6])
subplot(2,2,1);semilogy([1:niter],x,'-g');xlabel('Iteration (k)');ylabel('x(k)')
subplot(2,2,2);semilogy([1:niter-1],Q1(1:niter-1),'-b');xlabel('Iteration (k)');ylabel('Q1(k)')
subplot(2,2,3);semilogy([1:niter-1],Q2(1:niter-1),'-r');xlabel('Iteration (k)');ylabel('Q2(k)')
subplot(2,2,4);semilogy([1:niter-1],Q3(1:niter-1),'-b');xlabel('Iteration (k)');ylabel('Q3(k)')

[image:]

Let . This is a case of linear convergence:

In this case, the rate of convergence is r = 1/2 and the order of convergence is p = 1.

clear x Q1 Q2 Q3

niter = 1000;
for k = 1:niter
x(k) = 1/(2^k);
end

Q1 = abs(x(2:end))./(abs(x(1:end-1)).^0.5)
Q2 = abs(x(2:end))./(abs(x(1:end-1)).^1)
Q3 = abs(x(2:end))./(abs(x(1:end-1)).^2)

Linear_convergence = figure;set(gcf,'Unit','Normalized','Position',[0 0.4 0.6 0.6])
subplot(2,2,1);semilogy([1:niter],x,'-g');xlabel('Iteration (k)');ylabel('x(k)')
subplot(2,2,2);semilogy([1:niter-1],Q1(1:niter-1),'-b');xlabel('Iteration (k)');ylabel('Q1(k)')
subplot(2,2,3);semilogy([1:niter-1],Q2(1:niter-1),'-r');xlabel('Iteration (k)');ylabel('Q2(k)')
subplot(2,2,4);semilogy([1:niter-1],Q3(1:niter-1),'-b');xlabel('Iteration (k)');ylabel('Q3(k)')

[image:]

Finally, let . This is a case of quadratic convergence:

In this case, the rate of convergence is r = 1 and the order of convergence is p = 2.

clear x Q1 Q2 Q3

niter = 9;
for k = 1:niter
x(k) = 1/(2^(2^k));
end

Q1 = abs(x(2:end))./(abs(x(1:end-1)).^1)
Q2 = abs(x(2:end))./(abs(x(1:end-1)).^2)
Q3 = abs(x(2:end))./(abs(x(1:end-1)).^3)

Quadratic_convergence = figure;set(gcf,'Unit','Normalized','Position',[0 0.4 0.6 0.6])
subplot(2,2,1);semilogy([1:niter],x,'-g');xlabel('Iteration (k)');ylabel('x(k)')
subplot(2,2,2);semilogy([1:niter-1],Q1(1:niter-1),'-b');xlabel('Iteration (k)');ylabel('Q1(k)')
subplot(2,2,3);semilogy([1:niter-1],Q2(1:niter-1),'-r');xlabel('Iteration (k)');ylabel('Q2(k)')
subplot(2,2,4);semilogy([1:niter-1],Q3(1:niter-1),'-b');xlabel('Iteration (k)');ylabel('Q3(k)')

[image:]

From these examples we see that there is a unique exponent , the order of convergence, so that:

Smaller values and larger values assure faster convergence. Thus, there is a lot to gain to find the Newton direction (versus the Steepest descent direction (.

In practice an approximate estimate of the convergence order is derived as the limit of the following formula:

num = (x(4:end)-x(3:end-1))./(x(3:end-1)-x(2:end-2));
den = (x(3:end-1)-x(2:end-2))./(x(2:end-2)-x(1:end-3));
p = log(abs(num))./log(abs(den))
BFGS (Broyden-Fletcher-Goldfarb-Shanno method). We have seen how at each iteration the methods that use gradient information build a model based on the Taylor expansion of the objective around the current point :

and take the line search direction as the steepest descent (SD) vector:

or as the Newton vector:

to find the next iterate . If and are known, and is positive definite, one direct way to compute the Newton direction is to use a CG iteration to solve the system of linear equations:

Newton-type methods (see below) calculate directly at each iteration. Quasi-Newton methods avoid this by building an approximation of at each iteration using an appropriate updating technique. At each iteration, also the model is updated:

A large number of Hessian updating methods have been developed. However, the formula of Broyden, Fletcher, Goldfarb, and Shanno (BFGS) is the most effective for general use.

The updating formula given by BFGS, which assures that converges to in the search direction is:

where:

The gradient information is usually derived by partial derivatives using a numerical differentiation method via finite differences. Positive definiteness of is accomplished by ensuring that is initialized as positive definite (i.e., as the identity matrix, I) and that the term is always positive. This term is a product of the line search step length parameter and a combination of the search direction with past and present gradient evaluations,

The condition that is positive is obtained by performing a sufficiently accurate line search. This is because the search direction, , is a descent direction, so that and the term are always positive. The term is negative, but can be made as small as required by increasing the accuracy of the line search, which makes the gradient at the iteration smaller than that at the iteration.

Since at each iteration we need to recalculate the Newton direction to carry out the line search, the BFGS method introduces a new Hessian defined as:

based on which the update formula becomes:

The complete flow-chart for the BFGS methods is the following:

Start with point

Use the steepest descent as 1st step

while

 Do a Line Search to find

which is implemented in the function bfgs:

function [x1,f1,niter] = bfgs(f,x0,h,tolgrad,toldiff,tolline,nder,max_b_iter,max_s_iter)
% f = function to be minimized
% x = starting point as a column vector.
% h = initial search increment in the line search.
% nder = type of derivative: [1] 1st forward [2] 2nd forward [3] central
% tolgrad = error tolerance on the gradient.
% toldiff = error tolerance on the var diff.
% tolline = error tolerance on the minimum of f(x) in the line search.
% max_b_iter = maximum number of iterations in the bracketing phase.
% max_s_iter = maximum number of iterations in the sectioning phase.

if nargin < 9; max_s_iter = 10000; end
if nargin < 8; max_b_iter = 10000; end
if nargin < 7; nder = 3; end
if nargin < 6; tolgrad = 1.0e-8; end
if nargin < 5; toldiff = 1.0e-6; end
if nargin < 4; tolgrad = 1.0e-4; end
if nargin < 3; h = 0.01; end

n = size(x0,1);
I = eye(n);
H0 = I;
 [~,g0] = gradx(f,x0,nder);

niter = 0;
s = toldiff;

while norm(s) >= toldiff

 if (g0'*g0) <= tolgrad
 return
 end

 niter = niter + 1;
 p = -H0*g0;

 % Line search.
 [s,~] = line_search(@(s) f(x0+s*p),0.0,-Inf,Inf,h,tolline,max_b_iter,max_s_iter);
 x1 = x0+s*p;

 s = x1 - x0;
 [f1,g1] = gradx(f,x1,nder);
 q = g1 - g0;
 rho = 1/(q'*s);
 H1 = (I - rho*s*q')*H0*(I-rho*q*s') + rho*(s*s');
 x0 = x1;g0 = g1;H0 = H1;

end
end

func = @(x) 10*x(1)^2 + 3*x(2)^2 -10*x(1)*x(2) + 2*x(1)
x = [1 1]'
[xMin1,fMin1,nCyc1] = bfgs(func,x,0.0001,1.0e-4,1.0e-8,1.0e-8,1,1.0e4,1.0e4)
xMin1 = [-0.6000 -1.0000]
fMin1 = -0.6000
nCyc1 = 3

func = @(x) sin(x(1)) + x(2)^2 + log(x(3)) -7
x = [5 7 9]'
[xMin2,fMin2,nCyc2] = bfgs(func,x,0.00001,1.0e-4,1.0e-8,1.0e-8,2,1.0e4,1.0e4)
xMin2 = [5.0250 -0.0015 0.0000]
fMin2 = -46.8859
nCyc2 = 4

An alternative to the quasi-Newton type BFGS method is the Newton type Trust Region method. As before, the model around is based on the Taylor expansion of the objective around the current point :

truncated to 2nd order elements, where is the Newton vector:

which, as we have seen, can be used to find the next iterate in the search of the minimum of . However, the Newton vector is in itself the unconstrained full minimization (FS) step, , of the quadratic model . So, we can equivalently write:

Likewise, the steepest descent (SD) step, , of calculated as:

leads to the unconstrained minimum of the quadratic model along the steepest descent direction. Along with the model of we also define a region in which we trust the model to be a good representation of the objective . Usually the initial trust region is defined by its radius :

Notice that if:

we must find the constrained solution to the trust region subproblem:

Notice how the trust region is implemented by constraining . The optimizer of the model in this trust region becomes the next iterate .

We will not discuss here how this constrained minimum is found (see CHAPTERS 7,18 for other examples of constrained minimization), except for mentioning that in the so called 2D-subspace method, implemented in the MATLAB function fminunc, the minimization is staged to include all the vectors in the plane spanned by the full minimization step and the steepest descent step:

s.t.

Once a trial step is calculated a simple algorithm based on the ratio between actual and predicted reduction in function value is used to decide whether the step is accepted or not:

If (i.e.,) we shrink the size of the trust region; if it is safe to expand the trust region; in all other cases we leave unchanged.

Clearly, Newton-type methods, including the trust region methods, must calculate directly at each iteration. If is not positive definite (e.g., indefinite), it is possible to condition it by adding proper multiples (e.g., the negative of the largest negative eigenvalue) to the identity matrix so that the more general expression for becomes:

There are also other forms of conditioning based on just flipping the sign of the smallest and negative eigenvalues. If is positive semidefinite, it is also possible to use the pseudoinverse of .

Of course, if is positive definite, the Trust-region subproblem can be solved using with a CG iteration that solves the system of linear equations:

stopping the iteration when . Ultimately, when we get close to the minimum of , the trust-region constraint becomes inactive, as the model becomes a good approximation of the objective and the radius of the trust region grows.

Both the BFGS method and the Trust-region/2D-subspace method are implemented with a large range of options inside MATLAB fminunc function for unconstrained minimization:

func = @(x) sin(x(1)) + x(2)^2 + log(x(3)) -7
x = [5 7 9]

fminunc with internal calculation of gradients and Hessian:

options = optimoptions(@fminunc,'Algorithm','quasi-Newton',...
 'MaxFunEvals',5000,'MaxIter',5000,'GradObj','off',...
 'FinDiffType','central','DerivativeCheck','on',...
 'Display','final','TolFun',1e-9,'TolX',1e-9);
[xMin,fMin] = fminunc(func,x,options)

fminunc with external function for gradients calculation, but internal Hessian calculation:

fg = @(x) gradx(func,x,3);
options = optimoptions(@fminunc,'Algorithm','quasi-Newton',...
 'MaxFunEvals',5000,'MaxIter',5000,'GradObj','on',...
 'FinDiffType','central','DerivativeCheck','on',...
 'Display','final','TolFun',1e-9,'TolX',1e-9);
[xMin,fMin] = fminunc(fg,x,options)

fminunc with external function for gradients and internal Hessian calculation, but initial external Hessian provided as the identity matrix:

fg = @(x) gradx(func,x,3);
options = optimoptions(@fminunc,'Algorithm','quasi-Newton',...
 'MaxFunEvals',5000,'MaxIter',5000,'GradObj','on',...
 'FinDiffType','central','DerivativeCheck','on',...
 'InitialHessMatrix',[1 1 1],'InitialHessType','user-supplied',...
 'Display','final','TolFun',1e-9,'TolX',1e-9);
[xMin,fMin] = fminunc(fg,x,options)

Downhill Simplex.
When the n-dimensional surface representing the function is extremely irregular, minimizers based on conjugate directions/gradients or higher order derivatives can be easily trapped in small local minima. In these cases, or in other cases in which the function may have discontinuities, it is preferable to adopt a less efficient (=slower), but more robust method that does not use derivatives and can more easily hop over small bumps or gaps in the surface. The most popular of these methods is the Nelder-Mead method, or Downhill Simplex. In n-dimensional space a simplex is a figure of n+1 vertices connected by straight lines and bounded by polygonal faces. If n=2, a simplex is a triangle, if n=3, the simplex is a tetrahedron.

The downhill simplex algorithm can be better described by using as an example an n=2 dimensional function , for which the simplex is a triangle. The method compares function values at 3 vertices: the vertex at which is the largest is discarded and replaced with a new vertex. A new triangle is formed and the search continues generating a sequence of triangles, possibly of different shapes, for which the function values at the vertices become smaller and smaller.

The algorithm first makes a simplex around the initial guess x0 by adding 5% of each component x0i to x0, and using these n vectors as elements of the simplex. For example, if x = (1,1) the starting simplex has vertex coordinates v1 = (1.05, 1), v2 = (1, 1.05), v3 = (1.05, 1.05). Then, the algorithm modifies the simplex repeatedly according to the following procedure. We use here the convention of referring to the three vertexes of the simplex as B (for best), G (for good), and W (for worst) based on the function values at the three points.

Step1: midpoint of the Good side. The midpoint M of the line segment joining B and G is found by averaging their coordinates. Its distance from W is d:

Step 2: reflection using the point R. The function decreases along the edge from W to B, and from W to G, thus it is possible that it might take even smaller values on some points beyond the B-G edge and away from W. For this reason we choose a point R obtained by reflecting the triangle through the B-G edge:

Step 3: expansion using the point E. If the function value at R is smaller than at W, then it is possible that moving even further than R would decrease the function further. Thus, we move by an additional distance d along the line from M to R forming the triangle BGE:

If the function value at E is smaller than at R, than we have found a better vertex than R.

Step 4: contraction using the point C. If R is not better than W, we have to find another point. M might be better than R, but we can't choose a point on an edge because we need to form a triangle. We can choose two midpoints C1 (on the line segment WM) and C2 (on the line segment MR): the point with the smaller value becomes C in the new triangle BGC.

Step 5: shrinkage toward B. If C is not better than W, than the points G and W must shrink toward B: G is replaced by M, and W is replaced by S, the midpoint of the W-B edge.

The process continues and generates a sequence of triangles that converges down on the solution point as soon as a value of the function at one of the vertexes becomes smaller than a given tolerance value.

A Table for the logical decisions made at each step is shown below:

	If f(R)<f(G) THEN
carry out Case 1(reflect or extend)
ELSE
carry out Case 2 (contract or shrink)

	BEGIN Case 1
	BEGIN Case 2

	IF f(B) < f(R) THEN
	IF f(R) <f(W) THEN

	replace W with R
	replace W with R

	ELSE
	ELSE

	Compute E and f(E)
	compute C1 = (W+M)/2 and C2 = (M+R)/2

	
	compute f(C) = min(f(C1),f(C2))

	IF f(E)<f(B) THEN
	IF f(C)<f(W) THEN

	replace W with E
	replace W with C

	ELSE
	ELSE

	replace W with R
	compute S and f(S)

	
	replace W with S

	
	replace G with M

	ENDIF
	ENDIF

	ENDIF
	ENDIF

	END
	END

A MATLAB implementation of the downhill simplex algorithm is provided by the function fminsearch:

func = @(x) sin(x(1)) + x(2)^2 + log(x(3)) -7
x = [5 7 9]

options = optimset('MaxFunEvals',5000,'MaxIter',5000,'Display','final','TolFun',1e-8,'TolX',1e-8);
[xMin,fMin] = fminsearch(func,x,options)

Restarting the minimization from the result obtained in the previous run allows the method to jump over small irregularity in the surface:

for i = 1:100
 [xMin,fMin,exitflag,output] = fminsearch(func,xMin,options)
end

17-5

image4.png

image5.emf

x0

x1

x2

x3

x4

x5 x6

v1 v2

v3

s1v1

s2v2

s3v3

Search	directions

x

0

x

1

x

2

x

3

x

4

x

5

x

6

v

1

v

2

v

3

s

1

v

1

s

2

v

2

s

3

v

3

Search	directions

image6.emf

x0

x1

x2

x3

x4

x5 x6

v1 v2

v3

s1v1

s2v2

s3v3

Search	directions

x

0

x

1

x

2

x

3

x

4

x

5

x

6

v

1

v

2

v

3

s

1

v

1

s

2

v

2

s

3

v

3

Search	directions

image7.tiff

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image1.png

image2.emf

f(x)

a bx1 x2

Rh

f1
f2

Rh

h

2Rh-h

f(x)

a bx1 x2

f1
f2 Rh’

h’

Rh’

f(x)

a

bx

1

x

2

Rh

f

1

f

2

Rh

h

2Rh-h

f(x)

a

bx

1

x

2

f

1

f

2

Rh’

h’

Rh’

image3.png

