The fundamental theorem of linear algebra.

We can carry out matrix multiplication in different ways. For example, consider the product :

					         A	 x	    b

traditionally we carry out the multiplication as rows x columns and each element of b is obtained as a separate dot product:



However we can also consider b as a linear combination of the columns of A:



Since the three columns of A are linearly independent they are a possible basis for the R3 space; in fact we say that they span the R3 space. By the same token, since b is necessarily a linear combination of the independent columns of A, then b belongs to a vector space that we call the column space of A or C(A). In the terminology of linear transformations, the column space is often called the range of A.

We notice here that if instead of matrix x vector we had a matrix x matrix multiplication, the product would be obtained in the same way:


	A	B                    C

with the last 2 columns of the resulting matrix C originating from the linear combinations:


and


Thus, every column of C is in the column space of A.

Matrix multiplication is not 'commutative'; therefore in general 



We can view this latter multiplication again as rows x columns:  


             xT	        A		       								   c

or as a linear combination of the rows:




Notice that in this case the resulting vector c is a row vector; since the three rows of A are linearly independent and each contain 3 elements, they also are a possible basis for the R3 space; in fact we say that they also span the R3 space. By the same token, since c is necessarily a linear combination of the independent rows of A, then c belongs to a vector space that we call the row space of A or R(A). 

Notice that since A is a 3x3 matrix (square matrix) and all the columns/rows are linearly independent, the dimensions of the column and row space are 3: that is both the column and the row space correspond to the R3 space. However, we could have products involving a rectangular matrix of dimensions m x n (m rows x n columns):


					  A (4x3)   x (3x1)	b (4x1)


The vector b is of order 4 (it has 4 elements) and thus it belongs to the R4 (Rm=4) space (we write ), but since it is also derived from a linear combination of the columns of A, it also belongs to the column space of A. However, to represent Rm=4 we need 4 basis vectors of 4 elements each. Thus, the column space of A, while it belongs to Rm (, it can't represent its totality: in other words not all the vectors in Rm can be represented as a linear combination of the columns of A: we say that C(A) is a subspace of Rm. In fact, the dimensions of C(A) are 3, while the dimensions of Rm are 4. 

Notice that we could also have a left side multiplication as in:


				 xT (1x4)	    A (4x3)		c (1x3)


As we have seen before, the product c (a row vector) is a linear combination of the rows of A, and thus belongs to the row space of A, (R(A)). We notice here something important: the rows of A are vectors of order 3 (each have 3 elements), and therefore belong to R3 (Rn=3). However we have 4 rows, and we need only 3 linearly independent vectors to define Rn. In fact, any one of the 4 rows of A can be obtained as a linear combination of the other 3: for example the 4th  and 1st rows of A can be obtained, respectively,  as:



A = [2 0 2;3 1 1;1 1 1]
b = [1 2 1]
y = b*inv(A)
y = b/A
y*A


A = [3 1 1;1 1 1;1 2 1]
b = [2 0 2]
y = b*inv(A)
y = b/A
y*A

Thus, only 3 (any 3) of the 4 row vectors of A are linearly independent and span R(A), which means that the dimensions of R(A) are 3 (. We can summarize this result in the following table:

	subspace
	
	dimensions

	C(A)
	Rm = 4
	3

	R(A)
	Rn = 3
	3



It's clear from this table that the dimensions of C(A) and R(A) are the same (=3). This is a general result valid for any matrix (square or rectangular), and the number of these dimensions represents the rank (r) of the matrix A.


The number of linearly independent columns in a matrix is always the same as the number of linearly independent rows, and it represents the matrix RANK, r.

For example consider the matrix product:


					   A (6x4)	 x (4x1)    b (6x1)

The corresponding table for the m x n = 6 x 4 matrix A is:

	subspace
	
	dimensions = RANK

	C(A)
	Rm = 6
	2

	R(A)
	Rn = 4
	2



Only 2 of the 4 columns and 2 of the 6 rows of A are linearly independent. For example, columns 3 and 4 can be obtained as a linear combination of column 1 and 2:

 	and	 

A = [-6 2 0 4;-15 5 0 10;-7 3 1 3;-1 1 1 -1;1 1 2 -4;6 0 3 -9]
x = A(:,1:2)\A(:,3), x = A(:,1:2)\A(:,4)

Therefore, the dimensions of C(A) and R(A) are the same (= 2), and rank(A) = dim(C(A)) = dim(R(A)) = 2. 

rank(A) 		rank of A
CA = orth(A) 		orthogonal basis for the column space (range) of A
RA = orth(A') 	orthogonal basis for the row space of A

Now we ask the question: is there a more general strategy to find out if the columns of A are linearly independent? Since columns 3 and 4 can be obtained as a linear combination of columns 1 and 2, if we subtract those linear combinations from columns 3 and 4 we obtain a vector of all 0's. In fact, we can easily set up several linear combinations of the columns of A that sum up to 0. For example summing -0.5 of column 1 and -1.5 of column 2 to column 3, and taking none of column 4:


or taking 0 of the 3rd column and a linear combination of column 1 and 2 for column 4:


or even:


Thus, we can easily identify at least 3 vectors (different from the obvious 0 vector) that produce linear combinations of the columns of A that sum up to the 0 vector. In fact, if there are one or more solutions (different from the 0 vector) to the matrix equation  (in other words, if there is any combination of the columns of A that sums up to 0) it means that the columns of A are not all linearly independent.

However, it is important to notice that only some of all possible solutions to the matrix equation  may be linearly independent themselves. For example:



All the possible x vectors that solve  form a vector space called the null space of A (N(A)). In the language of linear transformations this is also called the kernel of A. We notice the following:

1. Since any x vector has the same number of elements of any row vector of A, then N(A) is a subspace of Rn :


2. The dimensions of Rn are n. Some of these dimensions were already taken by the row space of A, which also belongs to Rn. Since dim(R(A)) = rank = r, then the dimensions of the null space are n-r :


For example, for the A matrix (m = 6 rows x n = 4 columns) shown above, since rank = r = 2 we have . This means that only 2 basis vectors are sufficient to represent the null space of A. A possible basis for N(A) is represented by the two x vectors already found:


Notice that since the dot product of each row vector of A times any x vector in the null space is equal to 0 to fulfill the matrix equation , then any vector in the null space is perpendicular to any vector in the row space. For example:

		 		

N_a = null(A,'r') % rational form
A*N_a

In this case the basis  for the null space does not consist of unit or orthogonal vectors:

norm(N_a(:,1))
norm(N_a(:,2))
N_a'*N_a

However, we can also use the null function to choose orthonormal vectors:

N_a = null(A)
norm(N_a(:,1))
norm(N_a(:,2))
N_a'*N_a
A*N_a

For this reason we say that R(A) and N(A) are orthogonal complement subspaces of Rn, and their dimensions sum up to dim(Rn) = n.




We can ask the question: are there also one (or more) vectors (different from the 0 vector) that 'left' multiplying A will give the 0 vector? This is the same as asking if if there are one or more solutions to the matrix equation  (or, in other words, if there is any combinations of the rows of A that sums up to 0):


	   		     xT (1x6)		      A (m=6 x n=4)	

If such solutions exist, they belong to a space that we call the left nullspace of A, LN(A). The basis vectors of LN(A) are vectors of order 6, and thus they belong to Rm = 6, like the vectors in the column space of A, C(A).

We recall here that the transpose (or inverse) of a product is the product of the transpose (or inverse) of the elements in reversed order. For example:

 

Thus, by taking the transpose of both sides we find that the matrix equation  is completely equivalent to the matrix equation :


      AT (4x6) 		   x (6x1)

Thus, the left null space LN(A) of A is the same as the null space N(AT) of AT. 

Since taking the transpose does not change the rank r of A, the dimensions of the null space of AT are 6 – r = 4, or equivalently, the dimensions of the left null space of A are m – r = 4. This result makes sense: in fact, since the dimensions of Rm = 6 are 6, and 2 dimensions are already taken by the column space of A, the remaining 4 dimensions of Rm, form the basis for LN(A), which is a subspace of Rm. 

LN_a = null(A')
norm(LN_a(:,1))
norm(LN_a(:,2))
norm(LN_a(:,3))
norm(LN_a(:,4))
LN_a’*LN_a
LN_a'*A

Furthermore, since the dot product of each of the vectors in LN(A) with each of the columns of A is equal to 0, the four basis vectors of LN(A) are also orthogonal to any vector in the column space of A. It follows that C(A) and LN(A) are orthogonal complement subspaces of Rm.




We have now completed the analysis of the four spaces of a matrix: the existence and property of these four spaces represents the fundamental theorem of linear algebra. This theorem applies to any matrix of any dimension (square or rectangular). 

The following table summarizes the theorem for a general matrix A of dimensions m x n (m rows x n columns):

	subspace
	
	dimensions 
	orthogonal to

	C(A)
	Rm
	r
	LN(A) = N(AT)

	R(A)
	Rn
	r
	N(A)

	N(A)
	Rn
	n-r
	R(A)

	LN(A) = N(AT) 
	Rm
	m-r
	C(A)




The four spaces of a matrix A can also be represented with the following diagram:

[image: ]

Every matrix product Ax = b takes a vector x from Rn to a vector b in Rm. Any vector x can be thought of as the sum of two vectors xR(A) and xN(A), which are the projections of x onto the two subspaces R(A) and N(A) of Rn. If xN(A)  0, that component is taken to 0 in Rm. As a consequence AxR(A) = b is the same as Ax = b.

An important corollary of the fundamental theorem is that if x has a component in the null space of A, that component will be converted to 0. 

Once you go to 0 there is no way to come back!

Any operation carried out on 0 will always give 0. This means that if A is a square matrix and if the null space of A is not empty, it is not possible to find another matrix that will yield x (if x has a component in N(A)) acting on b: this is the same as saying that A is NOT invertible (there is no A-1 matrix), and we say that A is SINGULAR. 

How do we know if the null space of a matrix A is not empty? We recall here that the dimensions of N(A) are n-r, and that the rank r of a matrix is the number of linearly independent columns or rows. Thus, if the rank of a square matrix is less than n (that is, if some of the columns are not linearly independent), it means that there are n-r vectors in the null space, and therefore the matrix is singular. By the same token, if all the columns of a square matrix A are linearly independent, it means that the null space of A is empty, and an inverse A-1 of A exists.

Identification of the 4 subspaces of a matrix is the foundation of the matrix factorization known as Singular Value Decomposition or simply SVD (CHAPTER 11), which finds several important applications in biology. This factorization is used internally in MATLAB each time we invoke the functions:

CA = orth(A)
RA = orth(A')
N_a = null(A)
LN_a = null(A')
r = rank(A);

As a short hand for the complete SVD factorization:
[U,S,V] = svd(A)






PRACTICE
[image: ]
1. Consider the matrix U:



Its column space does not coincide with R3 because only 2 of the columns are independent (for example C1 = C2+C3). Thus, the basis for C(U) is given by only two vectors of R3, and C(U) is a subspace of R3. It is immediately obvious that this subspace is a plane through the origin of R3 containing the two vectors u1 and u2:



It's important to understand that while C(U) is itself a 2-dimensional space, its vectors belong to R3 and not to R2, whose vectors would have only 2 components. Furthermore, any space or subspace must also always contain the 0 vector (the origin). Thus, a plane that does not go through the origin (also defined as an affine plane) is NOT a subspace of R3.

Find the basis for the left null space of U. How would you represent this subspace of R3?


2. The traditional way of multiplying matrices is rows x columns. However there is also a way of doing it columns x rows. We recall here that the product of a column times a row is NOT a dot (inner) product ( = a scalar), but it is a matrix. For example:



[bookmark: _GoBack]As we mentioned, this type of product is also called an outer product (or dyadic product, and represented with the symbol  ). 

Based on this information show how you would calculate the following product using a columns x rows multiplication:



In particular, show the individual column x row products that are added up to form the final matrix.


3. Consider the linear transformation represented by the matrix:

A = [-6 2 0 4;-15 5 0 10;-7 3 1 3;...
     -1 1 1 -1;1 1 2 -4;6 0 3 -9]; 
 
Let's identify a possible choice of independent columns. We can accomplish this by doing Gaussian elimination on A until we achieve the row reduced echelon form of the matrix.
 
[R,jb] = rref(A)
 


Notice the following:

· The identity submatrix with 1's on the diagonal shows the rank = 2, and indicate there are 2 independent columns (column 1 and 2). 
· The indeces of the independent columns are also listed in the jb vector. 
· The columns outside the identity submatrix are the dependent columns: the elements of these columns adjacent to the identity submatrix show the linear combinations of the independent columns that generate the dependent columns. (e.g.: column 3 = 0.5 x column 1 + 1.5 x column 2).
· The rows of 0's below the identity submatrix indicate that there is a total of 4 linearly dependent rows, but do not give any information about the identity (indeces) of these rows.

Using this example as a guide:

a. Identify one possible choice of the independent rows.
b. Find a basis for the four subspaces of A.
 

4. Vector u1 = [3 7 5] is the 1st basis vector of an orthogonal basis U in R3. Using what you have learnt so far about the fundamental spaces of a matrix and about rotations: 

a. Find two other possible vectors of an orthogonal basis U. 
b. Display the standard basis V and the new basis U.
c. Find the transformation matrix Q that would allow the representation of any vector in the rotated frame U.


5. Consider the matrix equation Ax = b:



We recall that this equation is the same as:

-6x1 + 2x2 + 0x3 + 4x4 = 14
-15x1 + 5x2 + 0x3 + 10x4 = 35
-7x1 + 3x2 + 1x3 + 3x4 = 14
-1x1 + 1x2 + 1x3 - 1x4 = 0
1x1 + 1x2 + 2x3 - 4x4 = -7
6x1 + 0x2 + 3x3 - 9x4 = -21

This is a typical example of an overdetermined system of linear equations because there are more equations than unknowns (as opposed to an underdetermined system of linear equations in which there are more unknowns than equations). In cases like this one it can happen that an exact solution does not exist (e.g., b is not in the column space of A), and only a least-squares solution is possible (see CHAPTER 6). But in this particular case matrix A is rank deficient (r < n), which produces an interesting situation:

a. As it turns out, one possible exact solution for x is [1 2 3 4]. Verify this is true.
b. Use mldivide to find another possible solution.
c. Use Gauss-Jordan elimination to find another possible solution.
d. Using the null space of A can you find two other exact solutions?
e. How many exact solutions exist for this system of linear equations?
f. Is it possible to find a solution that would have the shortest possible length (=smallest 2-norm)?
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