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Abstract
The first step in the control design process is to develop appropriate mathematical models of
the system through physical laws or experimental data. In this section, we introduce the state-
space and transfer function representations of dynamic systems. Once appropriate mathematical
models of a system have been obtained, either in state-space or transfer function form, we may
then analyze these models to predict how the system will respond in both time and frequency
domains. To put this in context, control systems are often designed to improve stability, speed
of response, steady-state error, or prevent oscillations. In this section, we will show how to
determine these dynamic properties from the system models.
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Chapter 1

State of a Dynamic System

The concept of the state of a dynamic system refers to a minimum set of variables, known as
state variables, that fully describe the system and its response to any given set of inputs. In
particular a state-determined system model has the characteristic that:
<<A mathematical description of the system in terms of minimum set of variable xi(t), i = 1...n together
with knowledge of those variables at an initial time t > t0 are sufficient to predict the future system state
and outputs for all timet > t0 . This definition asserts that the dynamic behavior of state-determined
system is completely characterized by the response of the set of n variables xi(t), where the number n is
defined order of the system.>>
If the system is state-determined, knowledge of its state variables
(x1(t0), x2(t0), ..., xn(t0)) at some initial time t0, and the inputs u1(t) and u2(t) for t > t0 is
sufficient to determine all future behavior of the system. The state variables are an internal
description of the system which completely characterize the system state at any time t, and
from which any output variables yi(t) may be computed. System models constructed with the
pure and ideal (linear) one-port elements (such as mass, spring and damper elements) are state-
determined system models. For such systems the number of state variables, n, is equal to the
number of independent energy storage elements in the system. The values of the state variables
at any time t specify the energy of each energy storage element within the system and therefore
the total system energy, and the time derivatives of the state variables determine the rate of
change of the system energy. Furthermore, the values of the system state variables at any time t
provide sufficient information to determine the values of all other variables in the system at that
time.
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1.1 The State Equation

A standard form for the state equations is used throughout system dynamics. In the standard
form the mathematical description of the system is expressed as a set of n coupled first-order
ordinary differential equations, known as the state equations, in which the time derivative of
each state variable is expressed in terms of the state variables x1(t0), x2(t0), ..., xn(t0) and system
inputs u1(t),u2(t), ...ur(t). In the general case the form of the n is:

ẋ1 = f1(x,u, t)

ẋ2 = f2(x,u, t)

... = ... (1.1)

˙xn = fn(x,u, t)

where ẋ = dxi/dt and each of the function fi(x,u, t), i = 1...n may be a general non linear, time
varynig function of the state variables, the system inputs, and time.
It is common to express the state equations in a vector form, in which the set of n state variables
is written as a state vector x(t) = [x1(t), x2(t), ..., xn(t)]T , and the set of r inputs is written as and
input vector u(t) = [u1(t),u2(t), ...,ur(t)]T . Each state variable is a time varying component of
the column vector x(t).
This form of the state equations explicity represents the basic elements contained in the definition
of the state determined system. Given a set of initial conditions (the value of the xi at some time
t0) and the inputs for t > t0, the state equations explicity specify the derivatives of all state
variables. The value of each state variable at some time 4t later may then be found by direct
integration.
This form of the state equations explicity represents the basic elements contained in the definition
of the state determined system. Given a set of initial conditions (the values od the xi at some
time t0) and the inputs for t > t0, the state equations explicitly specify the derivatives of all state
variables. The value of each state variable at some time 4t later may then be found by direct
integration.
The system state at any instant may be interpreted as a point in an n-dimensional state space, and
the dynamic state response x(t), can be interpreted as a path or trajectory traced out in the state
space.
In vector notation, the set of n equation in Eqs. (1) may be written:

ẋ = f(x, u, t) (1.2)

where f(x, u, t) is a vector function whit n components fi(x, u, t).
In this note, we restrict attention primarly to a description of systems that are linear and time-
variant (LTI), that is systems described by linear differential equations with cosant coefficients.
For an LTI systems described by linear differential equations with costant coefficients. For an
LTI system of order n, and with r inputs, Eqs. (1) become a set of n coupled firs-order linear
differential equations with costant coefficients:

ẋ1 = a11x1 + a12x2 + ... + a1nxn + b11u1 + ... + b1rur
ẋ2 = a21x1 + a22x2 + ... + a :2n xn + b21u1 + ... + b2rur
...

...
ẋn = an1x1 + an2x2 + ... + anmxn + bn1u1 + ... + bnrur

(1.3)

where the coefficient e aij and bij are constants that describe the system. This set of n equation
define the deruvatuves of the state variables to be a weighted sum of the state variables and the
system inputs.
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Equation (3) may be written compactly in a matrix form:

d

dt


x1
x2
...
x3

 =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
...

an1 an2 · · · ann



x1
x2
...
xn

+


b11 · · · b1r
b21 b2r

...
...

bn1 · · · bnr


u1...
ur

 (1.4)

which may be summarized as:

ẋ = Ax + Bu (1.5)

where the state vector x is a column vector of lenght n, the input u is a column vector of lenght
r, A is an n× n square matrix of the constant coefficients aij, and B is an n×r matrix of the
coefficients bij that weight inputs.

1.2 Output Equations.

A system output is defined to be any sysstem variable of interest. A description of a physical
system i terms of a set of state variables does not necessarily include all of thevariables with an
immediate (engineering) interest. An important property of the linear state equation description
is that all system variables may be represented by a linear combination of the state variables xi
and the system inputs ui. An arbitrary output variable in a system of order n with r inputs may
be written:

y(t) = c1x1 + c2x2 + . . .+ cnxn + d1u1 + . . .+ drur (1.6)

where the ci and di are constants. If a total of m system variables are defined as outputs, the m
such equations may be written as:

y1 = c11x1 + c2x2 + . . .+ c1nxn + d11u1 + . . .+ d1rur
y2 = c21x1 + c22x2 + . . .+ c2nxn + d21u1 + . . .+ d2rur

...
ym = cm1x1 + cm2x2 + . . .+ cnmxn + dm1u1 + . . .+ dmrur

(1.7)

or in a matrix form:
y1
y2
...
ym

 =


c11 c12 . . . c1n
c21 c22 . . . c2n

...
...

cm1 cm2 . . . cmn



x1
x2
...
xn

+


d11 . . . d1r
d21 d2r

...
...

dm1 . . . dmr


u1...
ur

 (1.8)

The output equations, Eqs. (8), are commoly written in the compact form:

y = Cx + Du (1.9)

where y is a column vector of the output variables yi(t), C is an m× n matrix of the costant
coefficients cijthat weight the state variables, and D is an m× r matrix of the costant coefficients
dij that weight the system inputs. For many physical system the matrix D is the null matrix, ant
the output equation reduces to a simple weighted combination of the state variables:

y = Cx (1.10)

3 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
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1.3 State Equation Based Modeling Procedure.

The complete system model for a linear time invariant sustem consists of: i) a set of n state
equations, defined in terms of the matrix A and B, and ii) a set of output equations that relate
any output variables of interest to the state variables and inputs, and expressed in terms of the
C and D matrices. The task of modeling the system it to derive the elements of the matrices, and
to write the system model in the form:

ẋ = Ax + Bu
y = Cx + Du (1.11)

The matrices A andB are properties of the system and are determined by the system structure
and elements. The ouput equation matrices C and D are determined by the particular choice of
output variables.
The overall modeling procedure developed in this chapter is based on the following steps:

1. determination of the system order n and selection of a set of state variables from the linear
graph system representation;

2. generation of a set of state equations and the system A andBmatrices using a well defined
methodology. This step is also based on the linear system description;

3. determination of a suitable set of output equations and derivation of the appropriate C
and D matrices.

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 4



Chapter 2

Transformation From State-Space
Equations to Classical Form

The transfer function and the classical input-output differential equation for any system variable
may be found directly from a state space representation through the Laplace transform.
For example, we can find the transfer function and a single first-order differential equation
relating the output y(t) to the input u(t) for a system described by the first-order linear state
and output equations:

dx
dt = ax(t) + bu(t)
y(t) = cx(t) + du(t)

(2.1)

Thanks to Laplace transform, we can write the following expression:
sX(s) = aX(s) + bU(s) (2.2)

which may be rewritten with the state variable X(s) ont the left-hand side:
(s− a)X(s) = bU(s). (2.3)

Then dividing by (s− a), solve for the state variable:

X(s) =
b

s− a
U(s) (2.4)

and substitute into the Laplace transform of the output Y(s) = cX(s) + dU(s):

Y(s) =

[
bc

s− a
+ d

]
U(s) =

ds+ (bc− ad)

(s− a)
(2.5)

The transfer function is:

H(s) =
Y(s)

U(s)
=
ds+ (bc− ad)

(s− a)
(2.6)

The differential equation is found directly:
(s− a)Y(s) = (ds+ (bc− ad))U(s) (2.7)

and rewriting as a differential equation:
dy

dy
− ay = d

du

dt
+ (bc− ad)u(t) (2.8)

Classical representation of higher-order system may be derived in the same way using the
Laplace transform and matrix algebra. A set of linear state and output equations written in
standard form:

5
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ẋ = Ax + Bu
y = Cx + Du (2.9)

may be rewritten in the Laplace domain. The system equations are then:

sX(s) = AX(s) + BU(s)
Y(s) = CX(s) + DU(s) (2.10)

and the state equations may be rewritten:

sx(s) − Ax(s) = [sI − A]x(s) = Bu(s) (2.11)

where the term sI creates an n× n matrix with s on the leading diagonal and zeros elsewhere.
(This step is necessary because matrix addition and substraction is only defined for matrices of
the same dimension.) The matrix [sI − A] which appears frequently throughout linear system
theory it is a square n× n matrix with elements directly related to the A matrix:

[sI − A] =


(s− a11) −a12 . . . −a1n
−a21 (s− a22) . . . −a2n

...
...

. . .
...

−an1 −an2 . . . (s− ann)

 (2.12)

The state equations, written in the form of Eq. (22), are a set of n simultaneous operational
expressions. The common methods of solving linear algbric equations, for example Gaussion
elimination, Cramer’s rule, the inverse matrix , elimination and substitution, may be directly
applied to linear operational equations such as Eq. (22).
For low-order single-input single-output systems (SISO) the transformation to a classical formu-
lation may be performed in the following steps:

1. take the Laplace transform of the state equations;

2. reorganize each state equation so that all terms in the state variables are on the left-hand
side;

3. treat the state equations as a set of simultaneous algebric equations and solve for those
state variables required to generate the ouput variable;

4. substitute for the state variables in the output equation;

5. write the output equation in operational form and identify the transfer function;

6. use the transfer function to write a single differential equation between the output variable
and the system input.

This method can illustrated with the following example, where we considered the RLC elctric
circuit shown in Fig. 1:

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 6
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Figure 2.1: RLC circuit

Using Kirchoff’s law, we can choose the capacitor voltage vC(t) and the inductor current iL(t)
as state variable, and generates the following pair of state equations:

d

dt

[
vc
iL

]
=

[
0 1/C

−1/L −R/L

] [
vc
iL

]
+

[
0
1/L

]
Vin (2.13)

The required output equations is:

y(t) =
[
1 0

] [vc
iL

]
+ [0]Vin (2.14)

Step 1: in Laplace transform form the state equations are:
sVC(s) = 0VC(s) + 1/CIL(s) + 0Vs(s)
1/LVC(s) = −1/LVC(s) − R/LIL(s) + 1/LVs(s)

(2.15)

Step 2: reorganize the state equations:
sVC − 1/CIL(s) = 0Vs
1/LVC + [s+ R/L]IL(s) = 1/LVs

(2.16)

Step 3: in this case we have two simultaneous operational equations in the state variables vC and
iL. The output equation requires only vC. If Eq. (27.1) is multiplied by [s+ R/L],and Eq.(27.2) is
multiplied by 1/C, and the equations added, IL(s) is eliminated:

[s(s+ R/L) + 1/(LC)]VC(s) = 1/(LC)Vs(s) (2.17)

Step 4: the output equation is y = vc. Operate on both sides of Eq. (28) by [s2 + (R/L)s +
1/LC]−1and write in quotient form:

VC(s) =
1/LC

s2 + (R/L)s+ 1/LC
Vs(s) (2.18)

Step 5: the transfer function H(s) = VC(s)/Vs(s) is :

H(s) =
1/LC

s2 + (R/L)s+ 1/LC
(2.19)

Step 6: the differential equation relating vCto Vsis :
d2vC
dt2

+
R

L

dvC
dt

+
1

LC
vC =

1

LC
Vs(t) (2.20)

Cramer’s Rule, for the solution of set of linear algebric equations , is a useful method to apply to
the solution of these equations. In solving for the variable xi in a set of n linear algbric equations,
such as Ax = b the rule states:

7 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
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xi =
det[A(i)]

det[A]
(2.21)

where A(i) is another n× n matrix formed by replacing the ith column of A with the vector b.
If:

[sI − A]X(s) = BU(s) (2.22)

then the relationship between the ith state variable and the input is:

Xi(s) =
det

[
[sI − A](i)

]
det[sI − A]

U(s) (2.23)

where (sI − A)(i)is defined to be the matrix formed by replacing the ith column of (sI − A)with
the column vector B. The differential equation is:

det[sI − A]xi = det[(sI − A)(i)]uk(t) (2.24)

Then, riconsidering the previous example, using Cramer’s Rule, we can solve for vL(t) in the
following way. The output equation of state model is:

vL = −vC − RiL + Vs(t) (2.25)

In the Laplace domain the state equations are:[
s −1/C
1/L s+ R/L

] [
Vc(s)
IL(s)

]
=

[
Vc(s)
IL(s)

]
Vin(s) (2.26)

The voltage VC(s) is given by:

VC(s) =
det

[
[sI − A](1)

]
det[sI − A]

Vin(s) =

det

[
0 −1/C
1/L (s+ R/L)

]
det

[
s −1/C
1/L s+ R/L

] Vin(s) = 1/LC
s2 + (R/L)s+ (1/LC)

Vin(s)

(2.27)
The current IL(s) is:

IL(s) =
det

[
[sI − A](2)

]
det[sI − A]

Vin(s) =

det

[
s 0
1/L 1/L

]
det

[
s −1/C
1/L s+ R/L

]Vin(s) = R/L
s2 + (R/L)s+ (1/LC)

Vin(s)

(2.28)
The output equation may be written directly from Laplace transform of Eq. (36) and substituting
Eqs.(38-39):

VL(s) = −VC(s) − RIL(s) + Vs(s)

=

[
−1/LC

s2 + (R/L)s+ (1/LC)
+

−R/L
s2 + (R/L)s+ (1/LC)

+ 1

]
Vs(s)

=
(−1/LC− (R/L)s+ (s2 + (R/L)s+ (1/LC))

s2 + (R/L)s+ (1/LC)
Vs(s)

=
s2

s2 + (R/L)s+ (1/LC)
Vs(s) (2.29)

giving the differential equation:
d2vL
dt2

+
R

L

dvL
dt

+
1

LC
vL(t) =

d2Vs

dt2
(2.30)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 8
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For a single-input single-output (SISO) system the transfer function may be found directly by
evaluating the inverse matrix:

X(s) = (sI − A)−1BU(s) (2.31)

Using the definition of the matrix inverse:

[sI − A]−1 =
adj[sI − A]

det[sI − A]
, (2.32)

X(s) =
adj[sI − A]B
det[sI − A]

U(s). (2.33)

and substituting into the output equation gives:

Y(s) = C[sI − A]−1BU(s) + DU(s) =
[
C[sI − A]−1 + B +D

]
U(s). (2.34)

Expanding the inverse in terms of the determinant and the adjoint matrix yields:

Y(s) =
Cadj(sI − A)B + det[sI − A]D

det[sI − A]
U(s) = H(s)U(s) (2.35)

so that the required differential equation may be found by expanding:
det[sI − A]Y(s) = [Cadj(sI − A)B + det[sI − A]D]U(s) (2.36)

and taking the inverse Laplace transform of both sides.

9 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Chapter 3

Transformation from Classical Form
to State-Space Representation

The block diagram provides a convenient method for deriving a set of state equations for a
system that is specified in terms of a single input/output differential equation. A set of n state
variables can be identified as the outputs of integrators int the diagram, and state equations
can be written from the conditions at the inputs to the integrator blocks (the derivative of state
variables).
Let the differential equation representing the system be of order n, and without loss of generality
assume that the order of the polunomia operators on both sides is the same:

(ans
n + an−1s

n−1 + · · ·+ a0)Y(s) = (bns
n + bn−1s

n−1 + · · ·+ b0)U(s) (3.1)

We may multiply both sides of the equation by s−n to ensure that all differential operators have
been eliminated:

(an + an−1s
−1 + · · ·+ a1s−(n−1) + a0s

−n)Y(s))

= (bn + bn−1s
−1 + · · ·+ b1s−(n−1) + · · ·+ b0s−n)U(s)

(3.2)

from which the output may be specified in terms of a transfer function. If we define a dummy
variable Z(s), and split Eq. (49) into two parts:

Z(s) =
1

an + an−1s−1 + · · ·+ a1s−(n−1) + a0s−n
U(s) (3.3)

Y(s) = (bn + bn−1s
−1 + · · ·+ b1s−(n−1) + b0s

−n)Z(s) (3.4)

Eq. (30) may be solved for U(s),
U(s) = (an + an−1s

−1 + · · ·+ a1s−(n−1) + a0s
−n)X(s) (3.5)

and rearranged to generate a feedback structure that can be used as the basis for a block dia-
gramm:

Z(s) =
1

an
U(s) − (

an−1
an

1

s
+ · · ·+ a1

an

1

sn−1
+
a0
an

1

s−n
)Z(s) (3.6)

The dummy variable Z(s) is specified in terms of the system input u(t) and a weighted sum of
successive integrations of itself. Equation (51) serves to combine the outputs from the integrators
into output y(t).
A set of state equations may be found from the block diagram by assigning the state variables
xi(t) to the outputs of the n integrators. Because of the direct cascade connection of the integra-
tors, the state equations take a very simple form. By inspection:

10
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ẋ1 = x2
ẋ2 = x3
...

...
ẋn−1 = xn
ẋn = − a0an x1 − a1

an
x2 − · · ·− an−1

an
xn + 1

an
u(t)

(3.7)

In the matrix form these equations are:

ẋ1
ẋ2
...

ẋn−2
ẋn−1
ẋn


=



0 1 · · · 0 0
0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0
0 0 · · · 0 1

−a0/an −a1/an · · · −an−2/an −an−2/an





x1
x2
...

xn−2
xn−1
xn


+



0
0
...
0
0

1/an


u(t) (3.8)

The matrix A has a very distinctive form. Each row, except the bottom one, is filled of zeros
except for one in the position just above the leading diagonal. Equation (35) is a common
form of the state equations, used in control system theory and known as the phase variable or
companion form. This form leads to a set of state variables which may not correspond to any
physical variables within the system.
The corresponding output relationship is specified by Eq.(51) by noting Xi(s) = Z(s)/s(n+1+i).

y(t) = b0x1 + b1x2 + b2x3 + · · ·+ bn−1xn + bnz(t) (3.9)

But z(t) = dxn/dt, which is found from the nth state equation in Eq. (34). When substituted
into Eq.(36) the output equation is:

Y(s) =

[(
b1 −

bna0
an

)(
b1 −

bna1
an

)
· · ·
(
b1 −

bnan−1
an

)]
x1
x2
...
xn

+
bn

an
u(t) (3.10)

11 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.



Chapter 4

The Matrix Transfer Function

For a multiple-input multiple-output system Eq.(22) is written in ters of the r component input
vector U(s):

X(s) = [sI − A]−1BU(s) (4.1)

generating a set of n simultaneous linear equations, where the matrix is Bis n × r. The m
component system output vector Y(s) may be found by substituting this solution for X(s) into
the output equation as in Eq.(35):

Y(s) = C[sI − A]−1B{U(s)}+ D{U(s)} =
[
C[sU − A]−1B+ D

]
{U(s)} (4.2)

and expanding the inverse in terms of the determinant and the adjoint matrix:

Y(s) =
Cadj(sI − A)B + det[sI − A]D

det[sI − A]
U(s) = H(s)U(s) (4.3)

where H(s) is defined to be the matrix transfer function realting the output vector Y(s) to the
input vector U(s):

H(s) =
Cadj(sI − A)B + det[sI − A]D

det[sI − A]
(4.4)

For a system with r inputs U1(s), . . . ,Ur(s) and m outputs Y1(s), . . . , Ym(s), H(s) is as m× r
matrix whose elements are indiviudal scalr transfer functions realting a given component of the
output Y(s) to a component of the input U(s). Expansion of Eq. (41) generates a set of equations:

Y1(s)
Y2(s)

...
Ym(s)

 =


H11(s) H12(s) · · · H1r(s)
H21(s) H22(s) · · · H2r(s)

...
...

. . .
...

Hm1(s) Hm2(s) · · · Hmr(s)



U1(s)
U2(s)

...
Ur(s)

 (4.5)

where the ith component of the output vector Y(s) is:
Yi(s) = Hi1(s)U1(s) +Hi2(s)U2(s) + · · ·+Hir(s)Us(s) (4.6)

The elemental transfer function Hij(s) is the scalar transfer function between the ith output
component and the jth input component. Equation (61) shows that all the Hij(s) transfer func-
tions in H(s) have the same denominator factor det[sI−A], giving the important polynomial, or
alternatively have the same coefficients on the left-hand side.
If the system has single-input and single-output, H(s) is a scalr, and the procedure generates the
input/output transfer operator directly.
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Chapter 5

Frequency Response

5.1 The Concept of Frequency Response

In the steady state, sinusoidal inputs to a linear system generate sinusoidal responses of the
same frequency. Even though these responses have the same frequency of the input, they differ
in amplitude and phase angle from the input. These differences are functions of frequency.
Before defining frequency response, let us look at a convenient representation of sinusoids. Sin-
uoids can be represebted as complex number is the amplitude of the sinusoid, and the angle of
the complex number is the phase angle of the sinusoids. Thus, M1cos(ωt+φ1)can be repre-
sented as M1∠φ1where the frequency, ω, is implicit.
Since a system causes both the amplitude and phase angle of the input to be changed, we can
think of the system itself as represented by a complex number, defined so that the product of
the input phasor and the system function yields the phasor representation of the output.
Consider the mechanical system in Fig.(2) . If the input force, F(t), is sinusoidal, the steady-state
output respose, x(t), of the system is also sinusoidal and at the same frequencxy as the input.

Figure 5.1: System

Assume that the system is represented by the complex number, M(ω)∠φ(ω). The ouput steady-
state sinusoid is found by multiplying the complex number representation of the input by the
complex number representation of the system. Thus, the steady-state output sinusoid is:

M0(ω)∠φo =Mi(ω)M(ω)∠[φi(ω) −φ(ω)] (5.1)

and:
φ(ω) = φo(ω) −φi(ω) (5.2)

13
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Equations (65) and (64) form our definition of frequency response. We call M(ω) the magnitude
frequency response and φ(ω) the phase frequency response. The combination of the magnitude and
phase frequency responses is called the frequency response and is M(ω)∠φ.
In other words, we define the magnitude frequency response to be the ratio of the output si-
nusoid’s magnitude to the input sinusoid’s magnitude. We define the phase response to be
the difference in phase angle between the output and the input sinusoids. Both responses are
function of frequency and apply only to the steady-state sinusoidal response of the system.

5.2 Analytical Expressions for the Frequency Response.

Now that we have defined frequency response, let us obtain the analytical expression for it.
Consider a system rappresented by a transfer function G(s), with the Laplace transform of
general sinusoid, r(t) = Acos(ωt) + Bsin(ωt) =

√
A2 +B2cos[ωt− arctan(B/A)]as the input.

We can represent the input as a phasor in three ways:

1. polar form:,Mi∠φi, where Mi =
√
A2 +B2and φi = −arctan(B/A);

2. in rectangular form, A− jB;

3. using Euler’s formula: Mi exp(jφi).

We now solve for the forced response portion of C(s), from whic we evaluate the frequency
response. Rembering that the Laplace transfor of a sinuoid is:

L[sin(ωt)] = As+Bω

s2 +ω2
(5.3)

we have:

C(s) =
As+Bω

s2 +ω2
G(s) (5.4)

We separate the forced solution from the transient solution by performing a partial fraction on
Eq.(67). Thus,

C(s) =
As+Bω

(s+ω)(s−ω)
G(s) =

K1
s+ jω

+
K2

s− jω
+ . . . (5.5)

where:
K1 = As+Bω

s−jω G(s) |s−→−jω= 1
2 (A+ jB)G(−jω) = 1

2Mi exp(−jφi)M exp(−jφG) =
= MiM

2 exp(j(φi +φG))
(5.6)

K2 = As+Bω
s−jω G(s) |s−→+jω= 1

2 (A+ jB)G(jω) = 1
2Mi exp(jφi)M exp(jφG) =

= MiM
2 exp(j(φi +φG)) = K∗1

(5.7)

For Eqs.(69-70), K∗1is the complex conjugate of K1,
MG = |G(jω)| (5.8)

and:
φG = ∠G(jω) (5.9)

The steady-state response is that portion of the partial-fraction expansion that comes from input
waveform’s poles, or just the first two terms of Eq.(68). Hence, the sinusoidal steady-state output,
Css(s),is:

Css(s) =
K1

s+ jω
+

K2
s− jω

(5.10)

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License. 14
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Substituing Eqs. (69-70) into Eq.(73), we obtain:

Css(s) =
MiM
2 exp(j(φi +φG))1

s+ jω
+
MiM
2 exp(j(φi +φG))

s− jω
(5.11)

Taking the inverse Laplace transformation, we obtain:

c(t) =MiMG

(
exp(−j(ωt+φi+φG))+exp(j(ωt+φi+φG))

2

)
=MiMG cos(ωt+φi +φG)

(5.12)

which can be rapresented in phasor formas Mo∠φo = (M1∠φi)(MG∠φG), where MG∠φG
is the frequency response function. But, from Eqs.(71) and (72) MG∠φG. In other words, the
frequency response of a system whose transfer function is G(s) is:

G(jω) = G(s)|s−→jω (5.13)

15 This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
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