

QUICK START GUIDE

Deep Learning with MATLAB

Deep Learning Toolbox[™] provides built-in functionality for creating, training, and validating deep neural networks. This reference shows some common use cases. For additional examples, visit the documentation: *mathworks.com/help/deeplearning/examples.html*

Choosing an Architecture

Convolution Neural Network (CNN)

- Image data: classification, detection
- Common layers:
 - Convolution layer
 - Max pooling
 - ReLU layer
 - Batch normalization
- Train from scratch or use transfer learning with pretrained models

Long Short Term Memory (LSTM) Network

- Sequential data: time series forecasting, signal classification, text prediction
- Common layers:
 - LSTM layer
 - BiLSTM layer
- Perform regression or classification tasks

Use the **Deep Network Designer app** to interactively create and evaluate networks

Pretrained Networks

Import Networks

The toolbox provides several functions for exporting models and layers. More can be found on GitHub and *File Exchange*.

Import layers	importCaffeLayers
	importKerasLayers
Import network	importCaffeNetwork
	importKerasNetwork
Export	exportONNXNetwork

Pretrained Models

From Add-on Explorer, use one of the following

commands to import a network:			
alexnet	vgg19	inceptionv3	
googlenet	resnet50	squeezenet	
vgg16	resnet101		

Training Options Training Options Parallel, GPU, multi-Execution Environment GPU, auto (default) An epoch is one full MaxEpochs pass over entire training set Subset of training set to MiniBatchSize evaluate gradient and update weights A higher initial rate will InitialLearnRate speed up training but may diverge Drop the learn rate LearnRateSchedule over time by a factor ValidationData Validate during training Stop training if ValidationPatience accuracy is repeated a certain (saves time)

Validation

Inference

predict Returns probabilities belonging to each class

classify Returns labels and probabilities belonging to each class

[Ypred,scores] = classify(net,X); State

Network state can be captured and updated with predictAndUpdateState and classifyAndUpdateState

Visualization

Several forms of validations and visualizations can be specified through trainingOptions

Plots	Visualize progress
Verbose	Set to true to display training progress each epoch
VerboseFrequency	How often to display
OutputFcn	Custom function
CheckpointPath	Directory to save model each epoch

Improving Accuracy

Improving model accuracy depends on the task and the data. Common approaches include:

Network architecture:

- Use pretrained models from community experts
- Update layers and adjust parameters

Data preparation:

- Add data
- Training/validation/test split
- Normalize data
- Remove outliers
- Balance classes (add weights)

Hyperparameter tuning:

- Tune the training parameters with Bayes optimization
- Set up problem with

optimizableVariable

- Write function calling model and options
- Perform optimization with bayesopt
- obj = bayesopt(ObjFcn,OptVars,...);

Learn more: mathworks.com/solutions/deep-learning

mathworks.com

© 2018 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.