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Abstract—Memory safety has become a trending topic. The se-

verity of memory errors has been recently demonstrated by the 

CrowdStrike incident, which resulted in more than $5 billion in 

damages. Authorities and institutions are calling for a transition 

to memory-safe programming languages and urging the industry 

to reevaluate their current software development tools. However, 

while memory safety is essential for software reliability, it is some-

times tragically misunderstood, leading to conclusions that do not 

necessarily reduce the risk of software failure. This paper aims to 

demystify memory safety, to challenge oversimplified notions, and 

present a nuanced perspective on its implementation. We explore 

both established solutions (e.g., coding guidelines like MISRA 

C++) and emerging ones (e.g., new languages like Rust) and eval-

uate their mechanisms and guarantees in the context of embedded 

systems. We argue that memory safety is not a binary property, 

but rather a spectrum with many solutions, each having its own 

tradeoffs. We present a comparative analysis, assessing their im-

pact on development tools, cost, and their fit with current develop-

ment and certification practices. Overall, we conclude that 

memory safety cannot be automatically solved with new tools or 

programming languages; instead, it requires the whole develop-

ment process to be well-balanced, and thoroughly understood. 

Keywords—embedded software, verification, memory safety 

I.  INTRODUCTION 

Discussions on the topic of memory safety are currently trend-
ing. In recent years, numerous institutions, including CISA and 
NSA [1], have expressed deep concern, initiating new directives 
and research projects [2]. This trend is also evident in Figure 1, 
which illustrates the search queries on the topic: a historical peak 
was reached at the end of February 2024, shortly after the White 
House in the USA issued an official recommendation for a tran-
sition to memory-safe programming languages as part of the na-
tional security strategy [3]. 

Memory safety seems new and urgent, but it is an old prob-
lem. The first documented discussions can be traced back to 
1972 [4] and were prominently demonstrated in 1988 [5]: The 
"Morris" worm exploited a buffer overflow to infect thousands 
of computers via the young Internet. Although no direct damage 
was caused, the power of memory errors became visible for the 
first time. Over the years, far more significant damage has been 

caused by memory errors, including the recent CrowdStrike in-
cident ($5 billion [6]) and the Heartbleed vulnerability ($500 
million [7]). Memory errors are considered one of the most per-
sistent error classes [3] [4], dominating the Top 25 list of the 
most dangerous software vulnerabilities for many years [8]. 
Some studies suggest that up to 70% of security vulnerabilities 
can be attributed to memory errors [9] [10] [11] [12] [13]. 

In the domain of safety-critical embedded software, the call 
for memory-safe methods is also growing louder. However, this 
topic is not new and is already addressed in many regulations 
(sometimes under different names), such as in functional safety 
standards like ISO 26262-6 [14, pp. 19,26,46-47] and IEC 
61508-3 [15, pp. 27,103]. Moreover, two of the most popular 
programming languages in embedded systems, C and C++ [16] 
[17], are considered "memory-unsafe" [1]. Significant effort is 
required to avoid common memory errors like null pointers and 
buffer overflows. New memory-safe programming languages 
like Rust provide new hope, and are slowly being adopted in new 
projects within the automotive industry [18] [19] [20]. However, 
many other methods are available, such as memory-safe hard-
ware, compiler extensions, and coding guidelines like MISRA 
C. How do these differ or complement each other in terms of 
memory safety, effectiveness, and cost? 

 
Figure 1: Trending topic of "Memory Safety", data from Google 

Trends [49]. 



II. MEMORY SAFETY – DEFINITION 

Memory safety means that no invalid or unintended memory ac-
cesses occur in a program. There are two types of memory errors 
[4] [8], as illustrated in Figure 2: 

• Spatial Error: Accesses to unauthorized memory areas 
or addresses, that is, accessing the wrong memory lo-
cation. Typical examples include null pointers or writ-
ing beyond array bounds (buffer overflows). 

• Temporal Error: Accesses to memory at the wrong 
time. Typical examples are reading uninitialized, in-
completely written (race conditions), or already expired 
(use-after-free) variables. 

 
Impact: Memory errors can cause severe effects, leading to 

system failures (see CrowdStrike [6]) or security vulnerabilities 
(see Heartbleed [7]). They can also create behavior that contra-
dicts program logic [21], for example, change the content of un-
related variables or execute the wrong code. In embedded sys-
tems, this can result in critical functions malfunctioning or fail-
ing, potentially harming users. For instance, driver assistance 
systems might make unintended steering maneuvers [22], or 
medical devices might administer incorrect dosages [23]. The 
specific effects largely depend on the chosen programming lan-
guage and runtime environment, as we will demonstrate later. 

Challenge: Detecting faulty memory accesses is relatively 
easy (more on this in the next section), but avoiding the under-
lying causes (prevalence), usually programming or logic errors, 
is not. The exact control and data flows often depend on input 
data and can be difficult to predict. Consequently, compilers can 
only spot memory errors to a limited extent, especially given the 
high expectations on their speed. Memory safety is often 
achieved through run-time detection instead of preventing de-
velopers from writing faulty code.  

Limitation: It is important to understand that the property 
"memory safety" merely means that no faulty memory access 
takes place, but it does not specify how and when it is achieved. 
Many methods do not prevent developers from writing faulty 
programs, but merely detect faulty memory access during run-
time. Hence, memory safety does not necessarily mean that the 
underlying logical errors are prevented or remain without im-
pact. This is a common misconception. Even in a memory-safe 
programming language, it is possible to write a program that 
contains logical errors in memory access, and it has conse-
quences. Figure 3 shows an example: A logic error in Rust re-
sults in an attempt to read beyond array bounds in line 8. Here, 
the language guarantees safety by checking the memory access 
at runtime, recognizing it as faulty, and preventing it through a 
program termination ("panic"). This reliably protects the pro-
gram's integrity. An equivalent program in C/C++ could have 
executed the access unhindered and might have transitioned into 
undefined and unpredictable behavior [21],  likely making it dif-
ficult to debug. However, it remains that this terminating behav-
ior is inadequate for embedded software, as it can be seen as a 
DoS vulnerability according to CWE-125 from the end user's 
perspective. Instead, the underlying logic errors leading to at-
tempted bad memory access should be identified and corrected. 

III. METHODS FOR MORE MEMORY SAFETY 

To better assess existing approaches for improving memory 
safety, we evaluate their impact in two areas: 1. Reducing the 
frequency or prevalence of underlying errors and 2. Reducing 
their effects or impact. Additionally, we categorize each ap-
proach based on when it is applied (during programming, during 
compilation, at runtime) and account for the additional runtime 
overhead (CPU cycles and memory), as well as the costs of ini-
tial implementation (reimplementation, training of developers, 
setup of new tools) and certification (tool qualification, re-work 
for already certified systems) as suggested in [1] [8]. The results 
are summarized in Table 1 and explained in more detail below. 

A. Programming Language 

Switching to a memory-safe programming language can reduce 
both the prevalence and impact of memory errors. The degree of 
improvement depends on the chosen language, but underlying 
errors and their impacts are never completely eliminated. 

Memory-safe languages like Rust, Ada, Go, or C# have 
stricter semantics, enabling more comprehensive checks during 
compilation and thus uncovering more errors. Typically, a 

1| // memory access at wrong location 
2| int arr[3] = {1, 2, 3}; 
3| printf ("%d", arr[3]); 

4|  
 

// memory access at wrong time 
int x; 
printf ("data is %d\n", x); 

 
Figure 2: Spatial (top) and temporal memory error (bottom). 

 

 
Table 1: Overview of methods to achieve memory safety. 

Method When Reduction of Error … Runtime 

Overhead 

Initial 

Effort 

Coding Compila-

tion 

Runtime Preva-

lence 

Impact 

Programming  

Language 

X X X ++ ++ Low to  

High 

$$$ 

Coding 

Guidelines 

X   ++ + Low to  

Medium 

$$ 

Formal  

Methods 

X   +++ o None $$ 

Safe Libraries X  X + + Medium $ 

Compiler 

Extensions 

 X X + ++ Low to  

Medium 

$ 

Hardware   X o + Low $$$ 

Dynamic Test   X ++ o High $$ 
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higher level of safety entails a stricter compilation process, 
which increases development effort but drastically reduces the 
need for debugging and re-work [8] [24] [25]. Depending on the 
language, entire defect classes like double-free, race conditions 
and memory leaks can be eliminated. Additionally, most 
memory-safe languages rely on runtime checks and exceptions 
(see Figure 3) to detect faulty memory accesses missed by the 
compiler, causing runtime overhead. Several studies show that 
memory-safe languages can significantly reduce the number of 
memory errors [11]. In Android™, for example, switching to 
memory-safe languages has reduced memory-related vulnerabil-
ities from 76% to 24% [10]. 

However, we criticize that some promises go too far. State-
ments like "Memory errors can simply be eliminated by switch-
ing to memory-safe programming languages" [1] are, as dis-
cussed in the previous section, at best, misleading. Runtime 
checks, as found in Ada and Rust, are a valid means to ensure 
memory safety but lead to overhead and, more importantly, pro-
gram termination, which is an effect inadequate for embedded 
systems. For example, the CrowdStrike incident [6] would have 
had the same outcome in a memory-safe programming language 
since it was a case of missing input validation that can be (and 
has been by the authors) reproduced in languages like Rust.  

Moreover, and also sadly, Memory Safety is often treated as 
a binary property of a programming language – a language is 
either memory-safe, or it is not. Instead, it is more helpful to un-
derstand it as a spectrum [8] [24]. In principle, safe programs 
can be written in any language, but certain language features and 
default behaviors increase the chances of doing so [26]. Even 
C++, typically categorized as memory-unsafe [1] [3], has 
memory-safe features like bounds-checking for containers [9] 
and smart pointers, with more features expected in the future 
[17] [27] [28]. Similarly, there are language extensions for C that 
add bounds-checking and improve type safety [8]. 

Changing the programming language is not easy. In addition 
to the costs for new tools, training developers, and altering in-
frastructure, significant costs for (re-)certifications may arise [8] 

[17] [18]. Applicability may be limited by a lack of qualified 
personnel and certification risks of new tools. Changing the pro-
gramming language only applies to newly developed code, 
while legacy code is not affected. Furthermore, the safety guar-
antees of languages like Rust may need to be side-stepped when 
it comes to hardware access, which typically requires the unsafe 
mode. It is notoriously difficult to write robust code in this mode, 
since the strict language rules still apply, but the compiler can 
no longer aid with compile-time checks.  

B. Coding Guidelines and Standards 

Proper use of the programming language plays a crucial role for 
improving the degree of memory safety and reduce the impact 
of memory-related errors, regardless of the programming lan-
guage. Coding guidelines and standards are an effective method 
for reducing the causes and prevalence of underlying errors. By 
enforcing certain programming patterns, such as explicit error 
handling, the impacts of errors are also reduced, typically lead-
ing to the use of a "safer language subset." This approach is fre-
quently used in the embedded domain and is well-established in 
safety standards [1] [15] [14], which strongly suggest the use of 
coding standards like MISRA C. However, complete error 
avoidance and elimination of impacts are not possible through 
this, either.  

Established languages have coding guidelines like MISRA 
C/C++ [17] [29] and static code analysis tools for automatic 
checking, which sometimes also allow for defining custom rules 
(e.g., [30]). It is worth emphasizing that coding guidelines are 
also beneficial for memory-safe languages to prevent errors be-
fore runtime and reduce failing run-time checks. As example, 
Figure 5 shows coding rule that is useful in Rust. The guideline 
"array accesses must only occur via match expressions" would 
help to avoid a run-time panic when trying to access an array 
beyond its bounds. Hence, guideline checkers also exist for the 
memory-safe languages like Rust [31], but a widely accepted 
standard like MISRA C/C++ is missing.  

An efficient approach to produce code in a safe language 
subset is Model-Based Design [32]. The code is not written man-
ually but automatically generated from semantic models. The re-
sulting code is well-structured, and – depending on the used code 
generator and its settings – partially to fully compliant to certain 
coding guidelines. Moreover, some generators [32] can automat-
ically insert runtime checks, to improve the robustness. In our 
experience, generated code, thanks to its structural properties, is 
often automatically memory-safe by construction. 

The costs and effort of using coding guidelines are moderate 
since no new programming language is involved. For an effec-
tive use, static code analysis tools need to be obtained and inte-
grated into development processes, and developers need to learn 
how to interpret their results. Moreover, guidelines can restrict 
implementation choices and may require creating justifications 
and deviation records when rules need to be side-stepped or 
when analysis tools yield superfluous warnings (“False Posi-
tives”). Furthermore, coding guidelines have an indirect impact 
on runtime overhead, as they may favor constructs requiring 
more memory or processing time. In C++, for example, 
`std::vector::at()` includes implicit runtime boundary checks, 
unlike `std::vector::operator[]`. Similarly, defensive pro-
gramming leads to more runtime checks explicitly added by the 
developer. 

 
 

 
Figure 3: Memory-related errors also exist in memory-safe pro-

gramming languages (here: Rust). 

 



Limitations to applicability: Not all languages have widely 
accepted coding guidelines, which can be problematic in the 
context of certification. Retroactively applying guidelines to leg-
acy code involves a high code churn, which is costly and may 
introduce new errors. Performance-sensitive applications may 
be adversely affected by the strict rules. 

C. Formal Verification Methods 

Formal Methods offer exhaustive detection of certain error clas-
ses, enabling the total elimination of memory errors and their 
impacts. Standards such as ISO 26262 [14] and IEC 61805 [15] 
recommend them, and numerous institutions like CISA [8] and 
NIST [33] highlight their drastic impact on error reduction. 
Through mathematical analysis, all possible control and data 
flows are considered, and the safety of each program operation 
is either disproven or proven. This is a significant difference 
from "normal" static code analysis tools, which only provide in-
dications of errors but cannot confirm their absence [3]. 

In practice, Formal Methods are used similarly to static code 
analysis: An automated code review is conducted by parsing and 
analyzing the source code. Errors are reported to developers ei-
ther directly within the development environment or via a CI 
system. Typical tools are based on Abstract Interpretation or 
Theorem Proving and widely used in the embedded domain 
(e.g., [34] for C/C++). An example of a safety proof is shown in 
Figure 4 shows an example of a safety proof, where Formal Ver-
ification could prove that an array access in C++ is safe, regard-
less of input parameters. 

Formal Methods can reduce the need for runtime checks and 
help reclaiming performance: If they can prove that an error can-
not occur under any condition, then defensive coding and ex-
plicit runtime checks can be removed safely, reducing memory 
footprint and execution time. This is particularly useful when 
coding guidelines would be prohibitive for performance. 

The costs of using Formal Methods are comparable to those 
of coding guidelines. However, if applied naively, they can gen-
erate numerous false positives [1], and thus increase the review 
workload. Advanced usage tips have been published in [35]. 

Limitations to applicability: Formal Methods are a white-
box approach and require access to the source code or modeling 
language. They may suffer from scalability problems when soft-
ware is poorly structured and lacks interface definitions, in par-
ticular when used on complex software. Lastly, there is some-
times a lingering resistance against using Formal Methods, since 
early methods had a steep learning curve. 

D. Compiler Extensions 

Compiler extensions offer limited reduction of underlying errors 
but aim to mitigate the impact of errors. While stricter compila-
tion checks are possible through compiler plugins [36], they are 
practically constrained by the expectation for fast compilation 
times. Therefore, typical compiler extensions insert additional 
runtime checks into the instruction stream, which can be applied 
to both data and control flows and are sometimes performed by 
default according to language semantics (e.g., Ada).  

They are also available for “memory-unsafe” languages like 
C and C++, for example: 

• Clang Sanitizers [36] can detect invalid memory ac-
cess like use-after free and out-of-bounds access. 

• Control Flow Guard [37] monitors the integrity of 
control flow by validating the target address of indi-
rect branches. 

• CastGuard [8] partially detects type confusion, by de-
tecting illegal downcasts. 

• GWP-Asan [38] offers partial detection of heap 
memory errors related to allocation. 

All these run-time measures, however, create a performance 
penalty as the processor executes additional check instructions. 
This can range from a few percent [8] [37] to several times the 
execution time [36] [39], depending on the benchmark and the 
use of language-specific features. 

Another approach is taking measures to reduce error im-
pacts, instead of reducing the errors themselves. This comes as 
a lower cost but does not help detecting logical errors. One such 
example is automatic initialization of heap or stack variables [8]. 

 
Figure 4: Proof of Memory Safety in C++ with Formal Methods 

[34]. 

 

 
 

 

 

 

 

 
Figure 5: Coding guidelines help reducing run-time errors, also in 

memory-safe languages (here: Rust). The upper construct can re-

sult in a run-time panic and terminate the program, the lower is 

robust for all inputs. 

 

Guideline: Direct array indexing 
shall be avoided (Rust:4.1:Required) 
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Limitations to applicability: Certification of custom exten-
sions are difficult to qualify for safety-critical applications, and 
the performance overhead can be prohibitive. 

E. Memory-Safe Hardware 

Memory-safe hardware aims solely to minimize the impact of 
memory errors. This approach relies on runtime checks like 
compiler extensions but implemented in hardware to keep over-
head low. Memory errors are not reduced, but rather detected, 
with their impact minimized by stopping the program. 

A common mechanism is the Memory Management Unit 
(MMU) used with an operating system, triggering a segmenta-
tion fault when accessing an invalid memory area. However, this 
method can only detect a subset of memory errors. More ad-
vanced methods, like memory tagging extensions to prevent 
heap corruption [3] [8], are already available but do not offer 
complete detection. 

Another hardware influence on memory safety is the choice 
of architecture. Unlike the widely used von Neumann architec-
ture, the Harvard architecture reduces the likelihood of control 
flow corruption by separating data and instruction memory. 

Limitations to applicability: Availability and cost of the new 
hardware are limiting factors. For legacy systems, new hardware 
is typically prohibitive regarding cost and risk. 

F. Safe(r) Libraries 

Safer libraries can offer a moderate reduction in error causes and 
a minor reduction in the impact of errors with comparably low 
effort. Standard libraries can be replaced with safer variants that 
include more implicit runtime checks and stricter APIs. This can 
prevent some errors and detect others. An example is the use of 
safer C++ libraries with enhanced bounds-checking in the Chro-
mium project [11] and in the Google codebase [13]. The C++ 
working group also supports this idea [17] and plans extensions 
in upcoming releases. 

One specific example is Google’s “Miracle Pointer” [40], 
which protects against use-after-free (i.e., temporal) memory er-
rors. The main cost is memory overhead, typically around 5%. 

Limitations to applicability: The availability of safe libraries 
is limited, and there is a lack of standardization, making certifi-
cation and verification more challenging. 

G. Dynamic Tests and Fuzzing 

Testing is a widely used method to detect programming errors, 
and thus to reduce their prevalence. It is mandatory in many reg-
ulatory standards [15] [14] [17]. It involves executing the soft-
ware with specific test cases and passing well-defined check-
points. Fuzz testing [1] is particularly effective at detecting 
memory errors [13] and often relies on genetic algorithms [41] 
to find offensive inputs leading to memory errors. In all cases, 
the key to effective testing is having enough well-chosen test 
cases. While these can be automatically generated to achieve 
higher coverage (e.g., [42] for C/C++), they usually do not cover 
all program states. Therefore, dynamic tests can only detect the 
presence of errors, but not their absence [3] [33]. Some tools 
(e.g., [42]) try to overcome this limitation by integrating dy-
namic test with static analysis and Formal Methods. 

Testing typically incurs high costs [43]. Additionally, it often 
introduces significant runtime overhead and hence cannot be 

used in the production environment. Tests are sometimes implic-
itly executed and evaluated in a "virtual machine" (e.g., Valgrind 
[44] or Miri [45]) to detect more error classes. 

Limitations to applicability: The developer and tester should 
be independent to avoid testing bias. This can be prohibitive in 
terms of human and financial resources. Testing is difficult on 
incomplete code and may be infeasible (without further 
measures) for software under real-time constraints. Legacy sys-
tems may lack interfaces for effective testing.  

IV. A ROBUST DEVELOPMENT PROCESS FOR MEMORY 

SAFETY 

No single method can provide (more) memory safety without 
any additional effort or limitations, and more importantly, none 
of the methods alone can guarantee freedom from memory-re-
lated errors in critical software. Only an appropriate combination 
of methods and a well-defined development process are suffi-
cient to produce robust software. 

This can be seen by taking a closer look at the CrowdStrike 
incident, which would likely not have been prevented by choos-
ing a different programming language or by applying coding 
guidelines—the software in question was a Windows device 
diver written in C++, a language considered memory-unsafe. 
The underlying logical error has been a mismatch between two 
array lengths, which ultimately led to an out-of-bounds memory 
read [46]. One of the arrays was instantiated from dynamic input 
data delivered via network as a “Channel File”. This file was 
consumed by a content interpreter in the driver, and subse-
quently matched against a second array containing live sensor 
data. Depending on the system and its live data, the matching 
process could reach a state where only 20 inputs were provided, 
but the interpreter was trying to access the 21st one.  

Regardless of the programming language, this discrepancy 
between dynamic input data and program structure cannot be de-
tected by a compiler, since contextual information (from the 
channel file) is missing during compilation time. On the other 
hand, the compiler also cannot simply reject the program on 
grounds of potential errors, since the input may also be valid. 
Thus, the compiler will not consider the code as unsafe, and the 
compilation will be successful.  

At run-time, the choice of programming language would not 
have made much difference, either: The driver’s memory access 
error was detected by the Windows kernel. At this point, the ker-
nel could not deactivate the driver, since this requires the coop-
eration of the driver itself, which was obviously in a bad state. 
Consequently, the kernel was forced to throw a Blue Screen to 
protect the integrity of the user data. A memory-safe language 
could have detected the error via run-time checks before the ker-
nel. The result would have been the same since exception han-
dling is not allowed in kernel contexts. Considering this infor-
mation, it is questionable if the incident could have been avoided 
by using a memory safe programming language like Rust. 

Dynamic testing has been used and presumably discovered 
bugs before deployment, but apparently all automated test cases 
merely covered a regex wildcard criterion in the 21st field. Thus, 
no test was able to expose the out-of-bounds read when provided 
20 inputs instead of 21 [46]. Detecting software (error) states not 
covered by any test case is not trivial, even if the strictest cover-
age metrics like MC/DC are used. Therefore, testing can only be 
used to show to presence of bugs, not their absence. Fuzz Testing 



could have increased the chances of finding the bug. However, 
it could not provide any guarantee of absence either since it typ-
ically struggles to reach a high coverage [41]. 

Coding guidelines, in principle, may have suggested the use 
of safer containers, explicit error handling, and bounds-checked 
access, increasing risk awareness. However, they could also cre-
ate non-negligible performance penalties, a concerning factor in 
kernel drivers. In such a context, they may not produce addi-
tional value. A guideline violation is not necessarily a bug—de-
velopers may prioritize performance over style. Hence, coding 
guidelines may not be a good choice to increase memory safety 
in a kernel driver. 

Using Formal Methods would have reported clear evidence 
of all error cases and—according to our replication study—iden-
tified this bug. However, it does not solve the problem on its own 
but requires additional process steps. The analysis would have 
presented the issue as a potential bug that depends on input con-
ditions and pointed to many other potential problems. It is then 
the task of the developer to review the findings, provide external 
context (like the contents of the channel file) to refine the anal-
ysis, and—as last measure—add defensive code to prove the 
safety of the array access operation. 

Other process measures could have been a staggered deploy-
ment to minimize risk (e.g., non-critical clients first [46]) and 
architectural changes in the driver that move more functionality 
into the userland to reduce the probability of a Blue Screen 
(however, feasibility depends on the OS and its interfaces).  

In summary, we can see that the benefits of each method de-
pend on the type and the context of the software being devel-
oped. Hence, we must carefully evaluate each method in the spe-
cific domain and context and then define the development and 
deployment process around them. There is no generic optimal 
solution to avoid memory-related errors. Only by selecting sev-
eral methods, knowing their limitations, and using them consist-
ently, we can keep the cost low and provide an effective solution 
to memory safety. 

V. SUMMARY AND RECOMMENDATIONS 

Memory safety is sometimes misunderstood, and there is no uni-
versal solution to completely eliminate the causes and effects of 
memory errors. Different approaches to memory safety are 
available, each aiming to either fundamentally prevent the un-
derlying causes of memory errors or to mitigate their effects to 
varying degrees. Do not rely solely on the "memory safe" attrib-
ute—while it is a useful feature for embedded systems, it is in-
sufficient on its own. Instead, we must consider how it is 
achieved, at what cost, and to what extent. 

An effective memory safety strategy requires an appropriate 
combination of multiple methods to reduce or even eliminate 
both the occurrences and impact of underlying errors. Memory-
safe programming languages offer clear advantages but must be 
combined with other methods, such as coding guidelines to 
guide developers towards safer patterns and Formal Methods to 
foresee and completely eliminate the negative effects of memory 
errors. 

For existing software, an economically viable strategy might 
involve first employing safer libraries and better verification 
tools to identify existing errors. The next step is implementing 
new components in memory-safe languages and using hardware 
with memory-safe features. Finally, the re-development of 

legacy components can be considered to take advantage of new 
languages. Static code analysis and coding guidelines are essen-
tial at all stages to sustainably avoid runtime errors, regardless 
of programming language and hardware use. Through these in-
cremental improvements, developers can enhance memory 
safety in embedded systems while addressing the challenges as-
sociated with integrating new technologies. 

 

VI. REFERENCES 

 
[1]  CISA, NSA, FBI, ASC, CCS, NCSC-UK, NCSC-NZ, CERT-NZ, 

"The Case for Memory Safe Roadmaps," 2023. 

[2]  DoD DARPA, "Translating All C TO Rust (TRACTOR)," 2024. 
[Online]. Available: 

https://sam.gov/opp/1e45d648886b4e9ca91890285af77eb7/view. 

[3]  The White House, "Back to the Building Blocks: A Path toward 
Secure and Measurable Software," Washington, USA, 2024. 

[4]  V. van der Veen, N. dutt-Sharma, L. Cavallaro and H. Bos, "Memory 

Errors: The Past, the Present, and the Future," in Research in Attacks, 
Intrusions, and Defenses, Amsterdam, Netherlands, 2012.  

[5]  Wikipedia, "Morris worm," [Online]. Available: 

https://en.wikipedia.org/wiki/Morris_worm. 

[6]  Wikipedia, "2024 CrowdStrike-related IT outages," [Online]. 

Available: 

https://en.wikipedia.org/w/index.php?title=2024_CrowdStrike-
related_IT_outages&oldid=1249344762. 

[7]  Wikipedia, "Heartbleed," [Online]. Available: 

https://en.wikipedia.org/wiki/Heartbleed. 

[8]  CSAC Technical Advisory Council, "Report to the CISA Director, 

Memory Safety," 2023. 

[9]  Microsoft Research, "We need a safer systems programming 
language," [Online]. Available: 

https://msrc.microsoft.com/blog/2019/07/we-need-a-safer-systems-

programming-language/. [Accessed 04 Oct 2024]. 

[10]  Vander-Stoep, "Eliminating Memory Safety Vulnerabilities at the 

Source," Google Security Blog, 2024. [Online]. Available: 

https://security.googleblog.com/2024/09/eliminating-memory-safety-

vulnerabilities-Android.html. 

[11]  Chromium Project, "Memory safety," 2020. [Online]. Available: 

https://www.chromium.org/Home/chromium-security/memory-safety/. 

[12]  Google, Inc., "Project Zero," 2022. [Online]. Available: 

https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-
more-you-know-you.html. 

[13]  A. Rebert, C. Carruth, J. Engel and A. Qin, "Safer with Google: 

Advancing Memory Safety," Google, 2024. [Online]. Available: 
https://security.googleblog.com/2024/10/safer-with-google-

advancing-memory.html. [Accessed 16 12 2024]. 

[14]  International Organization for Standardization (ISO), "International 
Standard ISO 26262-6 (Road Vehicles - Functional Safety)," Geneva, 

Switzerland, 2018. 

[15]  IEC, "61508-3, Functional Safety, Software Requirements," Geneva, 
Switzerland, 2010. 

[16]  J. Beningo, "Has C++ Just Become More Popular than C?," 2024. 

[Online]. Available: https://www.embedded.com/has-c-just-become-
more-popular-than-c/. 

[17]  H. Hinnant, R. Orr, B. Stroustrup, D. Vandevoorde and M. Wong, 

"DG OPINION ON SAFETY FOR ISO C++," WG21, 2023. 

[18]  P. Whytock, "From C++ to Rust: The Changing Landscape of 

Automotive Programming," 2023. [Online]. Available: 

https://www.electropages.com/blog/2023/06/the-changing-face-of-
automotive-aoftware. 



www.embedded-world.eu 

 

[19]  J. Foufas, "Why Rust is actually good for your car," 2022. [Online]. 

Available: https://medium.com/volvo-cars-engineering/why-volvo-
thinks-you-should-have-rust-in-your-car-4320bd639e09. [Accessed 04 

Oct 2024]. 

[20]  "Rust in Automotive," reddit, [Online]. Available: 
https://www.reddit.com/r/rust/comments/yuwoby/rust_in_automotive/. 

[Accessed 04 Oct 2024]. 

[21]  M. Becker and J. Palczynski, "Automatic Verification of (un)intended 
Data and Control Flows in Embedded Software," in Embedded World 

Conference, Nuremberg, Germany, 2024.  

[22]  CISA, "BadAlloc Vulnerability Affecting BlackBerry QNX RTOS," 
23 Aug 2021. [Online]. Available: https://www.cisa.gov/news-

events/cybersecurity-advisories/aa21-229a. 

[23]  Wikipedia, "Therac-25," [Online]. Available: 
https://en.wikipedia.org/w/index.php?title=Therac-

25&oldid=1254594365. 

[24]  NSA, "Software Memory Safety," NSA, 2023. 

[25]  AdaIC, "The Boeing 777 Flies 99.9% on Ada," 2010. [Online]. 

Available: 

https://web.archive.org/web/20101229070248/http://archive.adaic.co
m/projects/atwork/boeing.html. [Accessed 04 Oct 2024]. 

[26]  S. Klabnik, "Memory Safety is a Red Herring," 2023. [Online]. 

Available: https://steveklabnik.com/writing/memory-safety-is-a-red-
herring/. [Accessed 04 Oct 2024]. 

[27]  S. Baxter and C. Mazakas, "Safe C++," 2024. [Online]. Available: 

https://safecpp.org/P3390R0.html. 

[28]  A. Alheraki, "Will C++26 Solve the Memory Safety Issue?," 2024. 

[Online]. Available: https://simplifycpp.org/?id=a0310. 

[29]  MISRA Consortium, "MISRA C++:2023 Guidelines for the use 
C++:17 in critical systems," 2023. 

[30]  MathWorks, Inc., "Polyspace Bug Finder," [Online]. Available: 

https://mathworks.com/products/polyspace-bug-finder.html. 

[31]  B. Qin, "A curated list of awesome Rust checkers," 13 July 2024. 

[Online]. Available: 

https://burtonqin.github.io/posts/2024/07/rustcheckers/. [Accessed 16 
Dec 2024]. 

[32]  MathWorks, Inc., "Embedded Coder," [Online]. Available: 

https://uk.mathworks.com/products/embedded-coder.html. [Accessed 
2024]. 

[33]  DoC NIST, "Dramatically Reducing Software Vulnerabilities," 2016. 

[34]  MathWorks, Inc., "Polyspace Code Prover," 18 Oct 2021. [Online]. 
Available: https://www.mathworks.com/products/polyspace-code-

prover.html. 

[35]  M. Becker and J. Palczynski, "Increasing Resilience to Cyberattacks 
Through Advanced Use of Static Code Analysis," in Embedded World 

Conference, Nuremberg, Germany, 2021.  

[36]  LLVM, "Clang compiler user's manual, controlling code generation," 

[Online]. Available: 
https://clang.llvm.org/docs/UsersManual.html#controlling-code-

generation. [Accessed 04 Oct 2024]. 

[37]  Microsoft Research, "Control Flow Guard for Clang/LLVM and 
Rust," 2020. [Online]. Available: 

https://msrc.microsoft.com/blog/2020/08/control-flow-guard-for-

clang-llvm-and-rust/. 

[38]  Chromium Project, "GWP-ASan," 2019. [Online]. Available: 

https://www.chromium.org/Home/chromium-security/articles/gwp-

asan/. 

[39]  TechHara, "Performance — C++ vs Rust vs Go," [Online]. Available: 

https://medium.com/@techhara/performance-c-vs-rust-vs-go-

a44cbd2cc882. [Accessed 04 Oct 2024]. 

[40]  A. Taylor, B. Nowierski and K. Haro, "Use-after-freedom: 

MiraclePtr," Google, 2022. [Online]. Available: 

https://security.googleblog.com/2022/09/use-after-freedom-
miracleptr.html. [Accessed 16 12 2024]. 

[41]  Wikipedia, "AFL," [Online]. Available: 

https://en.wikipedia.org/w/index.php?title=American_Fuzzy_Lop_(sof
tware). 

[42]  MathWorks, Inc., "Polyspace Test," [Online]. Available: 

https://mathworks.com/products/polyspace-test.html. 

[43]  G. Myers, C. Sandler and T. Badgett, The Art of Software Testing, 

Wiley, 2011.  

[44]  J. Seward and N. Nethercote, "Valgrind," 2000. [Online]. Available: 
https://valgrind.org/. [Accessed 04 Oct 2024]. 

[45]  Rust community, "rust-lang miri," [Online]. Available: 

https://github.com/rust-lang/miri. [Accessed 16 Dec 2024]. 

[46]  CrowdStrike Holdings, Inc., "External Technical Root Cause Analysis 

— Channel File 291," 6 August 2024. [Online]. Available: 

https://www.crowdstrike.com/wp-content/uploads/2024/08/Channel-
File-291-Incident-Root-Cause-Analysis-08.06.2024.pdf. [Accessed 06 

January 2025]. 

[47]  Microsoft, "Safe Libraries: C++ Standard Library," 2021. [Online]. 
Available: https://learn.microsoft.com/en-us/cpp/standard-library/safe-

libraries-cpp-standard-library. 

[48]  M. Becker, "Let's talk about Memory Safety," 2024. [Online]. 
Available: https://www.linkedin.com/pulse/lets-talk-memory-safety-

martin-becker-tdw8f/. [Accessed 04 Oct 2024]. 

[49]  Google Inc., "Google Trends "Memory Safety"," [Online]. Available: 
https://trends.google.com/trends/explore?date=2005-01-01%202024-

12-13&q=%2Fm%2F03c2cg9&hl=en. [Accessed 13 Dec 2024]. 

 
 

 


