Exhibition&Conference

@ embeddedworld

Understanding “Memory Safety”

Guarantees, Limits, and Different Solution Approaches

Martin Becker

The MathWorks GmbH
Munich, Germany

Abstract—Memory safety has become a trending topic. The se-
verity of memory errors has been recently demonstrated by the
CrowdStrike incident, which resulted in more than $5 billion in
damages. Authorities and institutions are calling for a transition
to memory-safe programming languages and urging the industry
to reevaluate their current software development tools. However,
while memory safety is essential for software reliability, it is some-
times tragically misunderstood, leading to conclusions that do not
necessarily reduce the risk of software failure. This paper aims to
demystify memory safety, to challenge oversimplified notions, and
present a nuanced perspective on its implementation. We explore
both established solutions (e.g., coding guidelines like MISRA
C++) and emerging ones (e.g., new languages like Rust) and eval-
uate their mechanisms and guarantees in the context of embedded
systems. We argue that memory safety is not a binary property,
but rather a spectrum with many solutions, each having its own
tradeoffs. We present a comparative analysis, assessing their im-
pact on development tools, cost, and their fit with current develop-
ment and certification practices. Overall, we conclude that
memory safety cannot be automatically solved with new tools or
programming languages; instead, it requires the whole develop-
ment process to be well-balanced, and thoroughly understood.

Keywords—embedded software, verification, memory safety

1. INTRODUCTION

Discussions on the topic of memory safety are currently trend-
ing. In recent years, numerous institutions, including CISA and
NSA [1], have expressed deep concern, initiating new directives
and research projects [2]. This trend is also evident in Figure 1,
which illustrates the search queries on the topic: a historical peak
was reached at the end of February 2024, shortly after the White
House in the USA issued an official recommendation for a tran-
sition to memory-safe programming languages as part of the na-
tional security strategy [3].

Memory safety seems new and urgent, but it is an old prob-
lem. The first documented discussions can be traced back to
1972 [4] and were prominently demonstrated in 1988 [5]: The
"Morris" worm exploited a buffer overflow to infect thousands
of computers via the young Internet. Although no direct damage
was caused, the power of memory errors became visible for the
first time. Over the years, far more significant damage has been

Jacob Palczynski

The MathWorks GmbH
Aachen, Germany

Interest over time

February 2024 /

The White House

100

75

50

25

0
>y Sy N %3 4 . N > N oy
NN INGIRMINGIEN RN
SO SN ol S R R S e~ S R S S
. . & . 3 . & N\ X5 3) 4 {\ 4 §V
PR P P P P PP
Figure 1: Trending topic of "Memory Safety", data from Google
Trends [49].

caused by memory errors, including the recent CrowdStrike in-
cident ($5 billion [6]) and the Heartbleed vulnerability ($500
million [7]). Memory errors are considered one of the most per-
sistent error classes [3] [4], dominating the Top 25 list of the
most dangerous software vulnerabilities for many years [8].
Some studies suggest that up to 70% of security vulnerabilities
can be attributed to memory errors [9] [10] [11] [12] [13].

In the domain of safety-critical embedded software, the call
for memory-safe methods is also growing louder. However, this
topic is not new and is already addressed in many regulations
(sometimes under different names), such as in functional safety
standards like ISO 26262-6 [14, pp. 19,26,46-47] and IEC
61508-3 [15, pp. 27,103]. Moreover, two of the most popular
programming languages in embedded systems, C and C++ [16]
[17], are considered "memory-unsafe" [1]. Significant effort is
required to avoid common memory errors like null pointers and
buffer overflows. New memory-safe programming languages
like Rust provide new hope, and are slowly being adopted in new
projects within the automotive industry [18] [19] [20]. However,
many other methods are available, such as memory-safe hard-
ware, compiler extensions, and coding guidelines like MISRA
C. How do these differ or complement each other in terms of
memory safety, effectiveness, and cost?

www.embedded-world.eu

// memory access at wrong location
int arr[3] = {1, 2, 3};
printf ("%d", arr[3]);

// memory access at wrong time
int x;
printf ("data is %d\n", x);

Figure 2: Spatial (top) and temporal memory error (bottom).

II. MEMORY SAFETY — DEFINITION

Memory safety means that no invalid or unintended memory ac-
cesses occur in a program. There are two types of memory errors
[4] [8], as illustrated in Figure 2:

e Spatial Error: Accesses to unauthorized memory areas
or addresses, that is, accessing the wrong memory lo-
cation. Typical examples include null pointers or writ-
ing beyond array bounds (buffer overflows).

e Temporal Error: Accesses to memory at the wrong
time. Typical examples are reading uninitialized, in-
completely written (race conditions), or already expired
(use-after-free) variables.

Impact: Memory errors can cause severe effects, leading to
system failures (see CrowdStrike [6]) or security vulnerabilities
(see Heartbleed [7]). They can also create behavior that contra-
dicts program logic [21], for example, change the content of un-
related variables or execute the wrong code. In embedded sys-
tems, this can result in critical functions malfunctioning or fail-
ing, potentially harming users. For instance, driver assistance
systems might make unintended steering maneuvers [22], or
medical devices might administer incorrect dosages [23]. The
specific effects largely depend on the chosen programming lan-
guage and runtime environment, as we will demonstrate later.

Challenge: Detecting faulty memory accesses is relatively
easy (more on this in the next section), but avoiding the under-
lying causes (prevalence), usually programming or logic errors,
is not. The exact control and data flows often depend on input
data and can be difficult to predict. Consequently, compilers can
only spot memory errors to a limited extent, especially given the
high expectations on their speed. Memory safety is often
achieved through run-time detection instead of preventing de-
velopers from writing faulty code.

Limitation: [t is important to understand that the property
"memory safety” merely means that no faulty memory access
takes place, but it does not specify how and when it is achieved.
Many methods do not prevent developers from writing faulty
programs, but merely detect faulty memory access during run-
time. Hence, memory safety does not necessarily mean that the
underlying logical errors are prevented or remain without im-
pact. This is a common misconception. Even in a memory-safe
programming language, it is possible to write a program that
contains logical errors in memory access, and it has conse-
quences. Figure 3 shows an example: A logic error in Rust re-
sults in an attempt to read beyond array bounds in line 8. Here,
the language guarantees safety by checking the memory access
at runtime, recognizing it as faulty, and preventing it through a
program termination ("panic"). This reliably protects the pro-
gram's integrity. An equivalent program in C/C++ could have
executed the access unhindered and might have transitioned into
undefined and unpredictable behavior [21], likely making it dif-
ficult to debug. However, it remains that this terminating behav-
ior is inadequate for embedded software, as it can be seen as a
DoS vulnerability according to CWE-125 from the end user's
perspective. Instead, the underlying logic errors leading to at-
tempted bad memory access should be identified and corrected.

IIl. METHODS FOR MORE MEMORY SAFETY

To better assess existing approaches for improving memory
safety, we evaluate their impact in two areas: 1. Reducing the
frequency or prevalence of underlying errors and 2. Reducing
their effects or impact. Additionally, we categorize each ap-
proach based on when it is applied (during programming, during
compilation, at runtime) and account for the additional runtime
overhead (CPU cycles and memory), as well as the costs of ini-
tial implementation (reimplementation, training of developers,
setup of new tools) and certification (tool qualification, re-work
for already certified systems) as suggested in [1] [8]. The results
are summarized in Table 1 and explained in more detail below.

A. Programming Language

Switching to a memory-safe programming language can reduce
both the prevalence and impact of memory errors. The degree of
improvement depends on the chosen language, but underlying
errors and their impacts are never completely eliminated.
Memory-safe languages like Rust, Ada, Go, or C# have
stricter semantics, enabling more comprehensive checks during
compilation and thus uncovering more errors. Typically, a

Table 1: Overview of methods to achieve memory safety.

Method When Reduction of Error ... Runtime Initial

Overhead Effort
Coding Compila- | Runtime Preva- Impact
tion lence

Programming X X X ++ ++ Low to $88

Language High

Coding X ++ + Low to $$

Guidelines Medium

Formal X +++ 0 None 3

Methods

Safe Libraries X X + + Medium $

Compiler X X + ++ Low to $

Extensions Medium

Hardware X 0 + Low $53

Dynamic Test X ++ 0 High $$

1 fn main() {

2 let val = cwel25(7);

3 println!("Hello, world, val={}", val);
4}

5

6 fn cwel25(index: usize) -> u32 {

7 let some_array: [u32; 5] = [@; 5];

8 some_array|[index]

9 }

Console:

PS C:\Temp\tutorials\rust\cwel25> cargo build
Compiling cwel25 v@.1.0 (C:\Temp\tutorials\rust\cwel25)
Finished dev [unoptimized + debuginfo] target(s) in 1.11ls
PS C:\Temp\tutorials\rust\cwel25> cargo run
Finished dev [unoptimized + debuginfo] target(s) in ©.00s
Running " target\debug\cwel25.exe"
thread 'main' panicked at src\main.rs:8:5:
index out of bounds: the len is 5 but the index is 7
note: run with “RUST_BACKTRACE=1" to display a backtrace
error: process didn't exit successfully: “cwel25.exe”

Figure 3: Memory-related errors also exist in memory-safe pro-
gramming languages (here: Rust).

higher level of safety entails a stricter compilation process,
which increases development effort but drastically reduces the
need for debugging and re-work [8] [24] [25]. Depending on the
language, entire defect classes like double-free, race conditions
and memory leaks can be eliminated. Additionally, most
memory-safe languages rely on runtime checks and exceptions
(see Figure 3) to detect faulty memory accesses missed by the
compiler, causing runtime overhead. Several studies show that
memory-safe languages can significantly reduce the number of
memory errors [11]. In Android™, for example, switching to
memory-safe languages has reduced memory-related vulnerabil-
ities from 76% to 24% [10].

However, we criticize that some promises go too far. State-
ments like "Memory errors can simply be eliminated by switch-
ing to memory-safe programming languages" [1] are, as dis-
cussed in the previous section, at best, misleading. Runtime
checks, as found in Ada and Rust, are a valid means to ensure
memory safety but lead to overhead and, more importantly, pro-
gram termination, which is an effect inadequate for embedded
systems. For example, the CrowdStrike incident [6] would have
had the same outcome in a memory-safe programming language
since it was a case of missing input validation that can be (and
has been by the authors) reproduced in languages like Rust.

Moreover, and also sadly, Memory Safety is often treated as
a binary property of a programming language — a language is
either memory-safe, or it is not. Instead, it is more helpful to un-
derstand it as a spectrum [8] [24]. In principle, safe programs
can be written in any language, but certain language features and
default behaviors increase the chances of doing so [26]. Even
C++, typically categorized as memory-unsafe [1] [3], has
memory-safe features like bounds-checking for containers [9]
and smart pointers, with more features expected in the future
[17]1[27][28]. Similarly, there are language extensions for C that
add bounds-checking and improve type safety [8].

Changing the programming language is not easy. In addition
to the costs for new tools, training developers, and altering in-
frastructure, significant costs for (re-)certifications may arise [8]

[17] [18]. Applicability may be limited by a lack of qualified
personnel and certification risks of new tools. Changing the pro-
gramming language only applies to newly developed code,
while legacy code is not affected. Furthermore, the safety guar-
antees of languages like Rust may need to be side-stepped when
it comes to hardware access, which typically requires the unsafe
mode. It is notoriously difficult to write robust code in this mode,
since the strict language rules still apply, but the compiler can
no longer aid with compile-time checks.

B. Coding Guidelines and Standards

Proper use of the programming language plays a crucial role for
improving the degree of memory safety and reduce the impact
of memory-related errors, regardless of the programming lan-
guage. Coding guidelines and standards are an effective method
for reducing the causes and prevalence of underlying errors. By
enforcing certain programming patterns, such as explicit error
handling, the impacts of errors are also reduced, typically lead-
ing to the use of a "safer language subset." This approach is fre-
quently used in the embedded domain and is well-established in
safety standards [1] [15] [14], which strongly suggest the use of
coding standards like MISRA C. However, complete error
avoidance and elimination of impacts are not possible through
this, either.

Established languages have coding guidelines like MISRA
C/C++ [17] [29] and static code analysis tools for automatic
checking, which sometimes also allow for defining custom rules
(e.g., [30]). It is worth emphasizing that coding guidelines are
also beneficial for memory-safe languages to prevent errors be-
fore runtime and reduce failing run-time checks. As example,
Figure 5 shows coding rule that is useful in Rust. The guideline
"array accesses must only occur via match expressions" would
help to avoid a run-time panic when trying to access an array
beyond its bounds. Hence, guideline checkers also exist for the
memory-safe languages like Rust [31], but a widely accepted
standard like MISRA C/C++ is missing.

An efficient approach to produce code in a safe language
subset is Model-Based Design [32]. The code is not written man-
ually but automatically generated from semantic models. The re-
sulting code is well-structured, and — depending on the used code
generator and its settings — partially to fully compliant to certain
coding guidelines. Moreover, some generators [32] can automat-
ically insert runtime checks, to improve the robustness. In our
experience, generated code, thanks to its structural properties, is
often automatically memory-safe by construction.

The costs and effort of using coding guidelines are moderate
since no new programming language is involved. For an effec-
tive use, static code analysis tools need to be obtained and inte-
grated into development processes, and developers need to learn
how to interpret their results. Moreover, guidelines can restrict
implementation choices and may require creating justifications
and deviation records when rules need to be side-stepped or
when analysis tools yield superfluous warnings (“False Posi-
tives”). Furthermore, coding guidelines have an indirect impact
on runtime overhead, as they may favor constructs requiring
more memory or processing time. In C++, for example,
‘std: :vector::at()’ includes implicit runtime boundary checks,
unlike ‘std::vector::operator[]’. Similarly, defensive pro-
gramming leads to more runtime checks explicitly added by the
developer.

www.embedded-world.eu

| ki

el<gl~~H

= Result Review

Status Unreviewed ~ | |Enter cornment here...

Severity Unset ~

+ Out of bounds array index (2
Array index is within bounds : [0..9]
array size: 10

array index value: [0 .. 9]

[Configuration | [¥] Result Details

i

initialisations.c x

vold initialise current data(void) {

int i;

W for (1 = 0; 1 < MAX SIZE; 1++) {
tabgi]l = 125

} Assignment to element of global array (int 32): 12

current data = &first_payload;

array size: 10
array index value: [0 .. 9]

Press 'F2' for focus|

vold partiall ~
Figure 4: Proof of Memory Safety in C++ with Formal Methods
[34].

Limitations to applicability: Not all languages have widely
accepted coding guidelines, which can be problematic in the
context of certification. Retroactively applying guidelines to leg-
acy code involves a high code churn, which is costly and may
introduce new errors. Performance-sensitive applications may
be adversely affected by the strict rules.

C. Formal Verification Methods

Formal Methods offer exhaustive detection of certain error clas-
ses, enabling the total elimination of memory errors and their
impacts. Standards such as ISO 26262 [14] and IEC 61805 [15]
recommend them, and numerous institutions like CISA [8] and
NIST [33] highlight their drastic impact on error reduction.
Through mathematical analysis, all possible control and data
flows are considered, and the safety of each program operation
is either disproven or proven. This is a significant difference
from "normal" static code analysis tools, which only provide in-
dications of errors but cannot confirm their absence [3].

In practice, Formal Methods are used similarly to static code
analysis: An automated code review is conducted by parsing and
analyzing the source code. Errors are reported to developers ei-
ther directly within the development environment or via a CI
system. Typical tools are based on Abstract Interpretation or
Theorem Proving and widely used in the embedded domain
(e.g., [34] for C/C++). An example of a safety proof is shown in
Figure 4 shows an example of a safety proof, where Formal Ver-
ification could prove that an array access in C++ is safe, regard-
less of input parameters.

Formal Methods can reduce the need for runtime checks and
help reclaiming performance: If they can prove that an error can-
not occur under any condition, then defensive coding and ex-
plicit runtime checks can be removed safely, reducing memory
footprint and execution time. This is particularly useful when
coding guidelines would be prohibitive for performance.

The costs of using Formal Methods are comparable to those
of coding guidelines. However, if applied naively, they can gen-
erate numerous false positives [1], and thus increase the review
workload. Advanced usage tips have been published in [35].

Limitations to applicability: Formal Methods are a white-
box approach and require access to the source code or modeling
language. They may suffer from scalability problems when soft-
ware is poorly structured and lacks interface definitions, in par-
ticular when used on complex software. Lastly, there is some-
times a lingering resistance against using Formal Methods, since
early methods had a steep learning curve.

D. Compiler Extensions

Compiler extensions offer limited reduction of underlying errors
but aim to mitigate the impact of errors. While stricter compila-
tion checks are possible through compiler plugins [36], they are
practically constrained by the expectation for fast compilation
times. Therefore, typical compiler extensions insert additional
runtime checks into the instruction stream, which can be applied
to both data and control flows and are sometimes performed by
default according to language semantics (e.g., Ada).

They are also available for “memory-unsafe” languages like
C and C++, for example:

e Clang Sanitizers [36] can detect invalid memory ac-
cess like use-after free and out-of-bounds access.

e Control Flow Guard [37] monitors the integrity of
control flow by validating the target address of indi-
rect branches.

e CastGuard [8] partially detects type confusion, by de-
tecting illegal downcasts.

e GWP-Asan [38] offers partial detection of heap
memory errors related to allocation.

All these run-time measures, however, create a performance
penalty as the processor executes additional check instructions.
This can range from a few percent [8] [37] to several times the
execution time [36] [39], depending on the benchmark and the
use of language-specific features.

Another approach is taking measures to reduce error im-
pacts, instead of reducing the errors themselves. This comes as
a lower cost but does not help detecting logical errors. One such
example is automatic initialization of heap or stack variables [8].

some_array|index]

Guideline: Direct array indexing
shall be avoided

match some_array.get(index) {
Some(&value) => value,
None => {
println!("Out of bounds! Returning default.");
2}

}

Figure 5: Coding guidelines help reducing run-time errors, also in
memory-safe languages (here: Rust). The upper construct can re-
sult in a run-time panic and terminate the program, the lower is
robust for all inputs.

Limitations to applicability: Certification of custom exten-
sions are difficult to qualify for safety-critical applications, and
the performance overhead can be prohibitive.

E. Memory-Safe Hardware

Memory-safe hardware aims solely to minimize the impact of
memory errors. This approach relies on runtime checks like
compiler extensions but implemented in hardware to keep over-
head low. Memory errors are not reduced, but rather detected,
with their impact minimized by stopping the program.

A common mechanism is the Memory Management Unit
(MMU) used with an operating system, triggering a segmenta-
tion fault when accessing an invalid memory area. However, this
method can only detect a subset of memory errors. More ad-
vanced methods, like memory tagging extensions to prevent
heap corruption [3] [8], are already available but do not offer
complete detection.

Another hardware influence on memory safety is the choice
of architecture. Unlike the widely used von Neumann architec-
ture, the Harvard architecture reduces the likelihood of control
flow corruption by separating data and instruction memory.

Limitations to applicability: Availability and cost of the new
hardware are limiting factors. For legacy systems, new hardware
is typically prohibitive regarding cost and risk.

F. Safe(r) Libraries

Safer libraries can offer a moderate reduction in error causes and
a minor reduction in the impact of errors with comparably low
effort. Standard libraries can be replaced with safer variants that
include more implicit runtime checks and stricter APIs. This can
prevent some errors and detect others. An example is the use of
safer C++ libraries with enhanced bounds-checking in the Chro-
mium project [11] and in the Google codebase [13]. The C++
working group also supports this idea [17] and plans extensions
in upcoming releases.

One specific example is Google’s “Miracle Pointer” [40],
which protects against use-after-free (i.e., temporal) memory er-
rors. The main cost is memory overhead, typically around 5%.

Limitations to applicability: The availability of safe libraries
is limited, and there is a lack of standardization, making certifi-
cation and verification more challenging.

G. Dynamic Tests and Fuzzing

Testing is a widely used method to detect programming errors,
and thus to reduce their prevalence. It is mandatory in many reg-
ulatory standards [15] [14] [17]. It involves executing the soft-
ware with specific test cases and passing well-defined check-
points. Fuzz testing [1] is particularly effective at detecting
memory errors [13] and often relies on genetic algorithms [41]
to find offensive inputs leading to memory errors. In all cases,
the key to effective testing is having enough well-chosen test
cases. While these can be automatically generated to achieve
higher coverage (e.g., [42] for C/C++), they usually do not cover
all program states. Therefore, dynamic tests can only detect the
presence of errors, but not their absence [3] [33]. Some tools
(e.g., [42]) try to overcome this limitation by integrating dy-
namic test with static analysis and Formal Methods.

Testing typically incurs high costs [43]. Additionally, it often
introduces significant runtime overhead and hence cannot be

used in the production environment. Tests are sometimes implic-
itly executed and evaluated in a "virtual machine" (e.g., Valgrind
[44] or Miri [45]) to detect more error classes.

Limitations to applicability: The developer and tester should
be independent to avoid testing bias. This can be prohibitive in
terms of human and financial resources. Testing is difficult on
incomplete code and may be infeasible (without further
measures) for software under real-time constraints. Legacy sys-
tems may lack interfaces for effective testing.

IV. A ROBUST DEVELOPMENT PROCESS FOR MEMORY
SAFETY

No single method can provide (more) memory safety without
any additional effort or limitations, and more importantly, none
of the methods alone can guarantee freedom from memory-re-
lated errors in critical software. Only an appropriate combination
of methods and a well-defined development process are suffi-
cient to produce robust software.

This can be seen by taking a closer look at the CrowdStrike
incident, which would likely not have been prevented by choos-
ing a different programming language or by applying coding
guidelines—the software in question was a Windows device
diver written in C++, a language considered memory-unsafe.
The underlying logical error has been a mismatch between two
array lengths, which ultimately led to an out-of-bounds memory
read [46]. One of the arrays was instantiated from dynamic input
data delivered via network as a “Channel File”. This file was
consumed by a content interpreter in the driver, and subse-
quently matched against a second array containing live sensor
data. Depending on the system and its live data, the matching
process could reach a state where only 20 inputs were provided,
but the interpreter was trying to access the 21 one.

Regardless of the programming language, this discrepancy
between dynamic input data and program structure cannot be de-
tected by a compiler, since contextual information (from the
channel file) is missing during compilation time. On the other
hand, the compiler also cannot simply reject the program on
grounds of potential errors, since the input may also be valid.
Thus, the compiler will not consider the code as unsafe, and the
compilation will be successful.

At run-time, the choice of programming language would not
have made much difference, either: The driver’s memory access
error was detected by the Windows kernel. At this point, the ker-
nel could not deactivate the driver, since this requires the coop-
eration of the driver itself, which was obviously in a bad state.
Consequently, the kernel was forced to throw a Blue Screen to
protect the integrity of the user data. A memory-safe language
could have detected the error via run-time checks before the ker-
nel. The result would have been the same since exception han-
dling is not allowed in kernel contexts. Considering this infor-
mation, it is questionable if the incident could have been avoided
by using a memory safe programming language like Rust.

Dynamic testing has been used and presumably discovered
bugs before deployment, but apparently all automated test cases
merely covered a regex wildcard criterion in the 21% field. Thus,
no test was able to expose the out-of-bounds read when provided
20 inputs instead of 21 [46]. Detecting software (error) states not
covered by any test case is not trivial, even if the strictest cover-
age metrics like MC/DC are used. Therefore, testing can only be
used to show to presence of bugs, not their absence. Fuzz Testing

www.embedded-world.eu

could have increased the chances of finding the bug. However,
it could not provide any guarantee of absence either since it typ-
ically struggles to reach a high coverage [41].

Coding guidelines, in principle, may have suggested the use
of safer containers, explicit error handling, and bounds-checked
access, increasing risk awareness. However, they could also cre-
ate non-negligible performance penalties, a concerning factor in
kernel drivers. In such a context, they may not produce addi-
tional value. A guideline violation is not necessarily a bug—de-
velopers may prioritize performance over style. Hence, coding
guidelines may not be a good choice to increase memory safety
in a kernel driver.

Using Formal Methods would have reported clear evidence
of all error cases and—according to our replication study—iden-
tified this bug. However, it does not solve the problem on its own
but requires additional process steps. The analysis would have
presented the issue as a potential bug that depends on input con-
ditions and pointed to many other potential problems. It is then
the task of the developer to review the findings, provide external
context (like the contents of the channel file) to refine the anal-
ysis, and—as last measure—add defensive code to prove the
safety of the array access operation.

Other process measures could have been a staggered deploy-
ment to minimize risk (e.g., non-critical clients first [46]) and
architectural changes in the driver that move more functionality
into the userland to reduce the probability of a Blue Screen
(however, feasibility depends on the OS and its interfaces).

In summary, we can see that the benefits of each method de-
pend on the type and the context of the software being devel-
oped. Hence, we must carefully evaluate each method in the spe-
cific domain and context and then define the development and
deployment process around them. There is no generic optimal
solution to avoid memory-related errors. Only by selecting sev-
eral methods, knowing their limitations, and using them consist-
ently, we can keep the cost low and provide an effective solution
to memory safety.

V. SUMMARY AND RECOMMENDATIONS

Memory safety is sometimes misunderstood, and there is no uni-
versal solution to completely eliminate the causes and effects of
memory errors. Different approaches to memory safety are
available, each aiming to either fundamentally prevent the un-
derlying causes of memory errors or to mitigate their effects to
varying degrees. Do not rely solely on the "memory safe" attrib-
ute—while it is a useful feature for embedded systems, it is in-
sufficient on its own. Instead, we must consider how it is
achieved, at what cost, and to what extent.

An effective memory safety strategy requires an appropriate
combination of multiple methods to reduce or even eliminate
both the occurrences and impact of underlying errors. Memory-
safe programming languages offer clear advantages but must be
combined with other methods, such as coding guidelines to
guide developers towards safer patterns and Formal Methods to
foresee and completely eliminate the negative effects of memory
eITors.

For existing software, an economically viable strategy might
involve first employing safer libraries and better verification
tools to identify existing errors. The next step is implementing
new components in memory-safe languages and using hardware
with memory-safe features. Finally, the re-development of

legacy components can be considered to take advantage of new
languages. Static code analysis and coding guidelines are essen-
tial at all stages to sustainably avoid runtime errors, regardless
of programming language and hardware use. Through these in-
cremental improvements, developers can enhance memory
safety in embedded systems while addressing the challenges as-
sociated with integrating new technologies.

VI. REFERENCES

[1] CISA, NSA, FBI, ASC, CCS, NCSC-UK, NCSC-NZ, CERT-NZ,
"The Case for Memory Safe Roadmaps," 2023.

[2] DoD DARPA, "Translating All C TO Rust (TRACTOR)," 2024.
[Online]. Available:
https://sam.gov/opp/1e45d648886b4e9ca91890285af77eb7/view.

[3] The White House, "Back to the Building Blocks: A Path toward
Secure and Measurable Software," Washington, USA, 2024.

[4] V. van der Veen, N. dutt-Sharma, L. Cavallaro and H. Bos, "Memory
Errors: The Past, the Present, and the Future," in Research in Attacks,
Intrusions, and Defenses, Amsterdam, Netherlands, 2012.

[5] Wikipedia, "Morris worm," [Online]. Available:
https://en.wikipedia.org/wiki/Morris worm.

[6] Wikipedia, "2024 CrowdStrike-related IT outages," [Online].
Available:
https://en.wikipedia.org/w/index.php?title=2024 CrowdStrike-
related IT outages&oldid=1249344762.

[7] Wikipedia, "Heartbleed," [Online]. Available:
https://en.wikipedia.org/wiki/Heartbleed.

[8] CSAC Technical Advisory Council, "Report to the CISA Director,
Memory Safety," 2023.

[91 Microsoft Research, "We need a safer systems programming
language," [Online]. Available:
https://msrc.microsoft.com/blog/2019/07/we-need-a-safer-systems-
programming-language/. [Accessed 04 Oct 2024].

[10] Vander-Stoep, "Eliminating Memory Safety Vulnerabilities at the
Source," Google Security Blog, 2024. [Online]. Available:
https://security.googleblog.com/2024/09/eliminating-memory-safety-
vulnerabilities-Android.html.

[11] Chromium Project, "Memory safety," 2020. [Online]. Available:
https://www.chromium.org/Home/chromium-security/memory-safety/.

[12] Google, Inc., "Project Zero," 2022. [Online]. Available:
https://googleprojectzero.blogspot.com/2022/04/the-more-you-know-
more-you-know-you.html.

[13] A. Rebert, C. Carruth, J. Engel and A. Qin, "Safer with Google:
Advancing Memory Safety," Google, 2024. [Online]. Available:
https://security.googleblog.com/2024/10/safer-with-google-
advancing-memory.html. [Accessed 16 12 2024].

[14] International Organization for Standardization (ISO), "International
Standard ISO 26262-6 (Road Vehicles - Functional Safety)," Geneva,
Switzerland, 2018.

[15] IEC, "61508-3, Functional Safety, Software Requirements," Geneva,
Switzerland, 2010.

[16] J. Beningo, "Has C++ Just Become More Popular than C?," 2024.
[Online]. Available: https://www.embedded.com/has-c-just-become-
more-popular-than-c/.

[17] H. Hinnant, R. Orr, B. Stroustrup, D. Vandevoorde and M. Wong,
"DG OPINION ON SAFETY FOR ISO C++," WG21, 2023.

[18] P. Whytock, "From C++ to Rust: The Changing Landscape of
Automotive Programming," 2023. [Online]. Available:
https://www.electropages.com/blog/2023/06/the-changing-face-of-
automotive-aoftware.

[19]

[20]

(21]

[22]

(23]

[24]
[25]

[26]

[27]
[28]
[29]
[30]

[31]

[32]

[33]
[34]

[35]

J. Foufas, "Why Rust is actually good for your car," 2022. [Online].
Available: https://medium.com/volvo-cars-engineering/why-volvo-
thinks-you-should-have-rust-in-your-car-4320bd639e09. [Accessed 04
Oct 2024].

"Rust in Automotive," reddit, [Online]. Available:
https://www.reddit.com/r/rust/comments/yuwoby/rust_in_automotive/.
[Accessed 04 Oct 2024].

M. Becker and J. Palczynski, "Automatic Verification of (un)intended
Data and Control Flows in Embedded Software," in Embedded World
Conference, Nuremberg, Germany, 2024.

CISA, "BadAlloc Vulnerability Affecting BlackBerry QNX RTOS,"
23 Aug 2021. [Online]. Available: https://www.cisa.gov/news-
events/cybersecurity-advisories/aa21-229a.

Wikipedia, "Therac-25," [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Therac-
25&o0ldid=1254594365.

NSA, "Software Memory Safety," NSA, 2023.

AdalC, "The Boeing 777 Flies 99.9% on Ada," 2010. [Online].
Auvailable:
https://web.archive.org/web/20101229070248/http://archive.adaic.co
m/projects/atwork/boeing.html. [Accessed 04 Oct 2024].

S. Klabnik, "Memory Safety is a Red Herring," 2023. [Online].
Available: https://steveklabnik.com/writing/memory-safety-is-a-red-
herring/. [Accessed 04 Oct 2024].

S. Baxter and C. Mazakas, "Safe C++," 2024. [Online]. Available:
https://safecpp.org/P3390R0.html.

A. Alheraki, "Will C++26 Solve the Memory Safety Issue?," 2024.
[Online]. Available: https://simplifycpp.org/?id=a0310.

MISRA Consortium, "MISRA C++:2023 Guidelines for the use
C++:17 in critical systems," 2023.

MathWorks, Inc., "Polyspace Bug Finder," [Online]. Available:
https://mathworks.com/products/polyspace-bug-finder.html.

B. Qin, "A curated list of awesome Rust checkers," 13 July 2024.
[Online]. Available:
https://burtonqin.github.io/posts/2024/07/rustcheckers/. [Accessed 16
Dec 2024].

MathWorks, Inc., "Embedded Coder," [Online]. Available:
https://uk.mathworks.com/products/embedded-coder.html. [Accessed
2024].

DoC NIST, "Dramatically Reducing Software Vulnerabilities," 2016.
MathWorks, Inc., "Polyspace Code Prover," 18 Oct 2021. [Online].
Available: https://www.mathworks.com/products/polyspace-code-
prover.html.

M. Becker and J. Palczynski, "Increasing Resilience to Cyberattacks
Through Advanced Use of Static Code Analysis," in Embedded World
Conference, Nuremberg, Germany, 2021.

[36]

[37]

[38]

[39]

[40]

[41]

[42]
[43]
[44]
[45]

[46]

[47]

[48]

[49]

LLVM, "Clang compiler user's manual, controlling code generation,"
[Online]. Available:
https://clang.llvm.org/docs/UsersManual.html#controlling-code-
generation. [Accessed 04 Oct 2024].

Microsoft Research, "Control Flow Guard for Clang/LLVM and
Rust," 2020. [Online]. Available:
https://msrc.microsoft.com/blog/2020/08/control-flow-guard-for-
clang-llvm-and-rust/.

Chromium Project, "GWP-ASan," 2019. [Online]. Available:
https://www.chromium.org/Home/chromium-security/articles/gwp-
asan/.

TechHara, "Performance — C++ vs Rust vs Go," [Online]. Available:
https://medium.com/@techhara/performance-c-vs-rust-vs-go-
ad4cbd2cc882. [Accessed 04 Oct 2024].

A. Taylor, B. Nowierski and K. Haro, "Use-after-freedom:
MiraclePtr," Google, 2022. [Online]. Available:
https://security.googleblog.com/2022/09/use-after-freedom-
miracleptr.html. [Accessed 16 12 2024].

Wikipedia, "AFL," [Online]. Available:
https://en.wikipedia.org/w/index.php?title=American_Fuzzy Lop (sof
tware).

MathWorks, Inc., "Polyspace Test," [Online]. Available:
https://mathworks.com/products/polyspace-test.html.

G. Myers, C. Sandler and T. Badgett, The Art of Software Testing,
Wiley, 2011.

J. Seward and N. Nethercote, "Valgrind," 2000. [Online]. Available:
https://valgrind.org/. [Accessed 04 Oct 2024].

Rust community, "rust-lang miri," [Online]. Available:
https://github.com/rust-lang/miri. [Accessed 16 Dec 2024].

CrowdStrike Holdings, Inc., "External Technical Root Cause Analysis
— Channel File 291," 6 August 2024. [Online]. Available:
https://www.crowdstrike.com/wp-content/uploads/2024/08/Channel-
File-291-Incident-Root-Cause-Analysis-08.06.2024.pdf. [Accessed 06
January 2025].

Microsoft, "Safe Libraries: C++ Standard Library," 2021. [Online].

Available: https:/learn.microsoft.com/en-us/cpp/standard-library/safe-
libraries-cpp-standard-library.

M. Becker, "Let's talk about Memory Safety," 2024. [Online].
Available: https://www.linkedin.com/pulse/lets-talk-memory-safety-
martin-becker-tdw8f/. [Accessed 04 Oct 2024].

Google Inc., "Google Trends "Memory Safety"," [Online]. Available:
https:/trends.google.com/trends/explore?date=2005-01-01%202024-
12-13&q=%2Fm%2F03c2cg9&hl=en. [Accessed 13 Dec 2024].

www.embedded-world.eu

