@ embeddedworld=zo=s

Exhibition&Conference
... it'’s a smarter world

Reconciling Software Development Speed and
Robustness with Optimally Balanced Static
Application Security Testing

Jacob Palczynski
Training Services
The MathWorks GmbH
Aachen, Germany
jpalczyn@mathworks.com

Abstract—Developing and maintaining secure software is
essential for modern safety-critical systems but is also a
challenging problem for agile development teams. Proven security
and fast development are natural antagonists which must be
reconciled to minimize vulnerabilities while guaranteeing a fast
response to cyber incidents. In this paper, we highlight the most
common problems in this context and show a proven strategy that
makes "agile security" an achievable routine. The proposed
strategy is based on the best practices of industry leaders from
various application domains and their use of static code analysis
at the right time and with the right scope and depth. It addresses
the well-known resource problem (who does security and when?),
the learning problem (how do developers learn, how do teams
improve?), and how to deliver sufficient and consistent security
evidence. With a clever balance of tools, automation, and
feedback, cybersecurity can be quantified, incrementally
improved, and delivered on time.

Keywords—DevSecOps, cybersecurity, agile, formal verification,
static code analysis, waste, efficiency

I. INTRODUCTION

Cybersecurity is a big challenge for today's software, with more
and more attacks aiming at embedded systems. For example, the
number of cyber incidents in automotive systems has more than
doubled from 2021 to 2022, with 89% of attacks involving
embedded systems [1]. The goal of cybersecurity is to protect
the system from its environment, to resist such attacks and
prevent malicious access. This contrasts with functional safety,
which vice versa seeks to protect the environment from system
malfunctions. Although it seems that cybersecurity is the less
critical among these two, it is important to understand that
unprotected access can lead to undesired control over the system
and impair functional safety. Therefore, cybersecurity is not
only an add-on, but the foundation for functional safety.
Attacks on embedded systems are not fundamentally new,
but until recently were not explicitly addressed in most industry
standards. Traditional safety analysis, founded on probabilities
and statistics (e.g., Fault Tree Analysis), falls short for

©2023 The MathWorks, Inc.

Martin Becker
Application Engineering
The MathWorks GmbH

Munich, Germany
mbecker@mathworks.com

Build Prove
Quality Robustness
. .
r | Al
S
component 2 component 2 5
P
------ EX
filel.c h]
""" g
— L et
3s
> | component 1 B
BN ihihv analvsis =
merge analysis, Tfie2clf finsol | " ghtly analysis, 5%
on Cl system isesssnssssssy on Cl system w
I
post commit =
N pre commit
....... N 2
flete 3 file1.c
1 7’ e £
. & -]
frequent analysis, i N r oz
fle2c | file2.c)
sach develope

[\ e

requent analysis ‘ filed.c . filed.c

each developer refine >
-

Figure 1: Optimal Workflow: Quality first, robustness second - local first,
global second. Most iterations take place early and on small units.

cybersecurity. Attackers often actively search for security issues
with massive expenditure of resources. Therefore, it is not the
probability that counts for security, but the feasibility. Especially
safety-critical software must function correctly even in unlikely
situations, which means that malicious attacks must be explicitly
considered during system design. Several newly published
standards, such as ISO/SAE 21434 , IEC-62443 [2], and DO-
356 [3], fill this gap now with new security requirements.

Developers, integrators, product managers, and other
contributors must familiarise themselves with this new topic and
follow these latest standards and regulations. However, only few
cybersecurity experts are available in the job market, and most
do not have the technical background of the respective
application. Apart from a reliable process, a way must be found
to transfer this knowledge to existing domain experts.
Furthermore, any security vulnerability discovered must be
closed quickly to limit financial, operational, safety, and privacy
damage. In summary, the development process must not “only”
satisfy new security requirements, but must also be more agile
than before.

www.embedded-world.eu

Cluco
e E—

setup .

compile

debug

bugfix

) publish review
document > commit >> run test >> results BA results

review
complete B4

assign review
issues B4 > issues >

value-added time

[nonvalue-added time

deviation
permit

Figure 2: Exemplary software development process. The amount of non-value-added time (“muda”) is usually dominant.

In this paper, we show how an optimal development process
for cyber-secure software can meet these new requirements and
simultaneously enable significant quality improvements. We
focus on the efficient assurance of quality using Static Code
Analysis. Our methods are based on the proven principles of
DevOps and the Toyota Production System. Both aim to
establish quality as early as possible (Shift Left) while shortening
development cycles and reducing costs. Essential elements
include avoiding unnecessary work, automation, and individual
and organisational learning. More details are provided in the
following sections.

The principles shown here lead to higher software quality in
less time [4], [5] as observed by the authors and as
comprehensively documented in literature [4], [5].

II. NEW CHALLENGES FROM CYBERSECURITY

As explained earlier, cybersecurity cannot be adequately
covered by traditional methods and processes as explained
earlier. Therefore, we first highlight the new challenges that
many development teams are currently facing.

A. Updates Must Be Expected

Software considered secure today may already be insecure
tomorrow. One obvious reason is that weaknesses can be missed
during development and discovered only during operation.
Another reason is that vulnerabilities may stem from external
sources. For example, the “Meltdown* vulnerability was caused
by a hardware design flaw, but demanded software updates since
only hardware platforms could be fixed by firmware updates [6].
Therefore, even with “perfect” software, we must anticipate
updates to patch newly identified security vulnerabilities.

These updates may require multiple iterations through the
development process (see Figure 3), which is why even minor
inefficiencies can accumulate exponentially higher costs. A
good analogy to this cost increase is the compound interest effect
known from mortgage loans — a seemingly small price which is
paid frequently, can accumulate to a major penalty over time.
An effective process, maintainability, and modularisation of the

new vulnerabilities (frequent update)

s stem System Continual
Rec,uuamemq Release System Care
Systam
BD‘:;"; Integration
o and Test
Hacker

SW Design SW Test

sw
Implementation

Figure 3: Cybersecurity requires regular and thus repetitive development
processes, illustrated here by the example of the V-model.

©2023 The MathWorks, Inc.

software are crucial to avoid this. These aspects are part of
fundamental software quality and become the basis for
maintaining cybersecurity throughout the product lifecycle. As
discussed next, programming guidelines offer an approach to
achieving this fundamental quality.

B. Compliance with Programming Guidelines Is Insufficient

Programming guidelines such as MISRA C or CERT C [7] and
avoiding dangerous code patterns (CWESs) reduce the potential
for errors during development and contribute significantly to
code quality. However, compliance with these guidelines is only
weak evidence for cybersecurity. They cannot guarantee that the
software works reliably in all corner cases [8] since they mainly
focus on bad design patterns.

(1) confidentiality (data is kept secret or private),

(2) integrity (data is trustworthy and free from tampering),

(3) availability (software works as and when expected).
These properties are also known as the CI4 Triad [9], an integral
part of the new cybersecurity standards and regulations [10] [3].
Covering the CIA Triad requires additional evidence achieved
through additional verification methods.

C. Evidence Requires (Waiting) Time

Obtaining strong security evidence takes time. The more
confidence is required, the more verification time must be
invested, especially as code complexity increases. Thus, we
have the choice between fast yet weak results or more time-
consuming but stronger results. The former may be incomplete
and may result in several design iterations. On the other hand,
the latter may require more initial effort from developers and
testers but fewer iterations to fix all programming errors.

Theoretically, development could happen in parallel with
verification, separating both efforts to a certain degree. For
example, developers could work on the next feature while their
latest changes are under verification. However, any software
changes may lead to stale verification results. Consequently,
development and verification must be at least partially
sequential, requiring a clever balance between speed and depth
of verification activities.

D. Who Trains the Developers?

In principle, independent from cybersecurity, there is also a
resource and learning problem: People make mistakes. Because
of the broad nature of cybersecurity, the resulting defects can no
longer be identified and resolved by a small QA team. Research
shows that most defects are due to individual mistakes and lack
of knowledge [11], so it is worth starting here. Every single
developer must write secure code from the beginning.

But how can developers identify errors that can lead to
security vulnerabilities and learn from them as early as possible
and systematically? Possible answers are code review and pair

programming [12], but these do not work as well in
cybersecurity. There are not enough security experts to make
this a viable approach. Moreover, it is well-known that humans
are ill-suited to mentally consider all corner cases, write
comprehensive tests, and reliably determine the absence of
defects [13]. Therefore, code review and pair programming are
typically focused on architectural decisions and functional
correctness and are ill-suited to cover cybersecurity.

Finally, developers typically get quality feedback with a time
delay, which is a problem. For example, this can happen when
integration problems arise or even during the running operation
of the product. Not only do developers lack a sense of the
completeness of security properties or the effectiveness of
hotfixes, but overall costs are disproportionately increased by
late discovery [14].

Summary: Cybersecurity requires demonstrably robust and
maintainable code in a short time. The development process
must be designed so that as few iterations as possible take place
and are terminated as soon as sufficient evidence for security
properties is obtained. Towards this, developers must be trained,
and their work made measurable. Nevertheless, there must be
room for flexibility along the way so that new features can be
implemented quickly. While cybersecurity must be a part of
every process step, it must not slow the process down
unnecessarily. These goals coincide with the principles of two
well-known production systems, which we will explain in more
detail in the following section.

III. WHAT MAKES AN EFFICIENT PROCESS?

The Toyota Production System (TPS [4], also known as Lean in
Western cultures) describes practices that have been applied
successfully for decades, reconciling quality and development
speed with maximum resource efficiency. These practices
started in vehicle manufacturing (Toyota) but have long reached
other disciplines, such as software development. Close relatives
are the more recent DevOps practices, which are strongly
influenced by TPS and continue the success story. The practices
focus on company philosophy, culture, and process. However,
they do not prescribe specific tools or workflows but build on
basic principles which each company must realise in its way.
Many teams already know that such practices help them to

achieve their goals. Results are among others [4] [15] [5]:

(1) Shorter development times for new features.

(2) Fewer defects and higher reliability.

(3) Shorter response times for hotfixes.

(4) Significantly higher profits.

In this paper, we focus on TPS because it is more detailed

than the more common DevOps and includes the latter at its
core. Thus, the strategies described here apply to both worlds.

A. Avoiding Unnecessary Effort (Muda)

The central objective in TPS is avoiding unnecessary effort or
waste — Muda. Specifically, Muda is defined as any activity
that does not directly contribute to product value from the
customer's point of view. Examples are rework caused by
defects, waiting times, the development of components that do
not go into the product, and tasks that serve the preparation
(setup of tools) or the handover (reviews and approvals).

The share of value-adding efforts in a software development
process is only small, as shown in Figure 2. Each step is shown

©2023 The MathWorks, Inc.

only once, but software development is typically iterative, which
makes Muda even more important. For example, we must repeat
the steps to set up a branch (or at least check it out), develop the
fix, commit, re-test, and so on if a defect is found. The entire
process must be repeated many times before the software is
ready, which further exacerbates Muda. While this is
unsatisfactory, it is also an opportunity that TPS and DevOps are
taking on.

B. Unnecessary Effort (Muda) in Software Development

The TPS [4] defines seven types of muda, which can be mapped
to software development as follows:

(M1) Overproduction (e.g., useless features, increasing
almost all other types of muda).

Waiting time (e.g., for compilation, automatic
testing, or computational resources).

Transport (e.g., handover/handoff, or even data
transfer, causing time loss).

Overprocessing [e.g., higher complexity than
needed, due to bad or needlessly complex design —
causes time loss and increases (M7)].

Large inventory (e.g., work-in-progress such as
numerous half-finished features or hotfixes,
increasing risk of obsolescence, conflicts, and
defects).

Setup/use workstation (e.g., switching between
branches, which takes both mechanical setup work
and time to mentally switch context).

Defects require bug fixes, retesting, etc. and it is well
documented that defects found late are
disproportionately more expensive to fix [14].

M2)
(M3)

(M4)

(M5)

(M6)

M7)

Note that some activities may be considered Muda by
definition, yet may still be unavoidable (e.g., process reasons,
compliance reports). The updates already mentioned are another
example. In theory, these are unnecessary because with
complete information about the future, attacks could be foreseen
from the start and the software developed accordingly. For such
“useless” activities, we follow the maxim: As efficiently as
possible, as rarely as necessary.

Some principles have been defined in TPS and DevOps (see
Table 1) to systematically minimize the waste described above,
which we will discuss later at the appropriate point.

Table 1: The 14 Principles of the Toyota Production System [4].

Aspect Principles

Philosophy P1: Take long-term management decisions
Process P2: Implement a one-piece flow

P3: Use pull systems

P4: Heijunka — levelled workload

P5: Jidoka — built-in quality

P6: Standardize work

P7: Visual management

P8: Use reliable and proven technology
Human and P9: Grow leaders who understand

Partners P10: Grow exceptional people and teams

P11: Respect network of partners and suppliers
Problem P12: Genchi genbutsu - go see for yourself
Solving P13: Take decisions slowly by consensus

P14: Hansei and Kaizen — reflect and improve

www.embedded-world.eu

IV. THE IDEAL WORKFLOW

In this section, we introduce an ideal software development
workflow that minimizes useless effort and addresses the
aforementioned challenges of learning problem, resource
problem, and sufficient evidence for cybersecurity. It also
reconciles high software quality with fast development cycles.
The focus lies on the implementation and verification of the
source code.

We rely on a balanced combination of pre-commit and post-
commit code scans using Static Code Analysis tools. The pre-
commit analysis should run fast and with [limited context,
complemented by an automated CI job (Table 1, P2) which runs
after the commit and performs a comprehensive proof in the
integration context. This approach is both reasonable and
efficient, as we will explain next.

A. Proofs: Sound Static Application Security Testing (SAST).

As discussed in Section 1I.B, adherence to coding guidelines is
generally insufficient to achieve cybersecurity because rare or
unexpected usage patterns are usually absent from functional
tests, thus inadequately covering the CIA Triad. What is needed
here are “negative tests” beyond the specification. Ideally, all
possibilities should be covered entirely, providing strong
evidence for robustness. Consequently, methods particularly
suitable for cybersecurity should be able to: (1) identify rare and
non-intuitive program states, (2a) prove the fulfilment of the
CIA properties with sufficient evidence, or (2b) conversely
show defects by providing concrete examples. Security then
becomes measurable. Such methods exist in the form of static
code analysis tools (SAST), which are sound (i.e., which
consider all reachable program states without missing “bad
cases”). We have detailed the advantages over other tools that
merely check guidelines in [16].

B. Before Commit: Shift Left Using SAST

It is well known that early verification saves time and costs [14].
Security vulnerabilities can be detected and fixed while being
introduced (Shift Left, P5) if SAST is applied before the commit,
reducing useless effort for later repair (M7). Furthermore,
transport (M3) is also minimised since the handover for
integration (commit, review) has to be repeated less often.

Specifically, secure coding guidelines such as CERT C and
the absence of safety-critical code patterns (CWEs) should be
checked early, and so should robustness in corner cases (see
above). We will detail the correct sequence later. It is important
to cover both to meet cyber-security; see also I11.B.

The tools which are used should also minimise the
developer's effort. They should be well integrated into the
development environment and support the automatic setup of the
analyses based on the build environment, thereby reducing setup
effort and context switching times (M6). They reduce the time
required to fix defects (M7) by providing detailed explanations
for the identified security vulnerabilities. Finally, SAST tools
must have short response times at the developer's end to
minimise waiting times (M2).

The Learning Problem: In the context of Shifi Left, SAST
can also significantly facilitate familiarising developers with the
topic of cybersecurity. While pair programming and code
reviews are insufficient due to human limitations and lack of
experience (see above), the “expert in the computer” reliably
closes this gap. SAST can provide rigorous and valuable

©2023 The MathWorks, Inc.

feedback to developers by working consistently, not missing
defects due to human limitations, and acting on security
knowledge built into the tool. It provides an initial assessment of
code quality within seconds by seamlessly integrating into the
programming environment and uncovers poor programming
patterns as well as potential security vulnerabilities.

Over time, individual developers will learn and deliver more
robust software in a shorter time. Developers can recognise their
areas of improvement and reduce errors in the first place by
applying the tools repeatedly. Developers profit further from
increased confidence that their contributions are robust and
ready for integration.

C. After Commit: Less Technical Debt Thanks to SAST

To complement early verification, automated SAST analysis
should take place after each commit. The goal is to verify all
contributions consistently and in the same target environment
(no more “works for me”) and ensuring minimum quality before
or when the code is integrated. This principle is also known as
gatekeeper or quality gate and can be extended to automated
approvals and merges to improve “flow” (P2).

In the event of a “bad” commit, gatekeepers can also
implement the principle of Jidoka (P5), which means “stop, get
together and solve”. This is achieved with the “Andon Chord” at
Toyota, a rope that runs along the production line. If a worker
detects a serious problem, she can pull this rope, resulting in a
full stop of the production line after a short grace period [4]. All
workers can then come together and focus on solving the
problem and preventing defects (M7) from being passed
downstream, which would result in even higher costs later. It
also prevents similar problems from recurring and not being
solved (M3), (M6). It is important to follow up on such incidents
by identifying and analysing the root cause (P14) and defining
suitable best practices (P6) to avoid identical errors in the future.
These practices will lead to efficiency gains by gatekeepers in
the long run. For our software development, this can mean
enabling additional SAST checks before the commit or
introducing appropriate coding guidelines.

D. Scope and Ownership

However, Shift Left should not be carried too far because this
would also lead to Muda. Instead, the scope of analysis should
always fit the particular process step. In brief: You should only
analyse what you are allowed to change.

A typical mistake with Shift Left is all-encompassing early
verification, for example, workflows in which each developer
performs integration-level analyses before committing. First,
this approach appears plausible as it allows catching as many
defects as possible early, but it causes unnecessary waiting times
(M2) because the analysis produces results that the developer
cannot address and will thus ignore. Second, issues may be fixed
in a suboptimal way, as some findings will be interface problems
that usually affect several stakeholders and should therefore be
discussed together. Third, even if the cause of the interface issue
is obvious, the developer may take measures resulting in
superfluous code in the later integration context because changes
in the surrounding code may fix it automatically. One example
is redundant defensive coding when the input parameters are not
yet known but the final implementation only uses input
parameters that do not lead to an error. In this case, redundant
defensive coding may lead to performance degradation during

runtime. This all results in overprocessing (M4) due to too much
Shift Left. And finally, comprehensive early analyses may also
lead to developers not accepting or even rejecting the analysis
tools. If a SAST tool lacks context and flags too many
constructs, developers may ignore its warnings (“I know better”)
or may not use the tool at all (“too noisy”). In both cases, one
can expect more defects (M7), and wasted learning potential.

The correct approach here is a clever balance again, as
shown in Figure I: Before the commit (the lower half plane in
the figure), only the developer’s respective working package
(e.g., unit, module) should be analysed. This routine shortens
analysis time (M2) and keeps developers’ focus in their
“territory,” where they can immediately make corrections or
document intentional deviations from guidelines with the
rationale still present. A focused analyses SAST tool must not
display issues that depend on external data or control flows to
avoid overprocessing (M4) due to lack of context.

On the other hand, a complete integration analysis should
occur after the commit, detecting the (few) remaining defects,
typically only interface and integration issues. Since integration
issues affect multiple parties (shared ownership, upper half plane
in the figure), the tool should allow for sharing of the analysis
results and facilitate discussions on the issues found as reflected
in the TPS principle “Decide with Consensus” (P13).
Consequently, SAST tools meant for this scenario should offer
tracking, commenting, and assigning of issues, and ideally, a
connection to external bug tracking tools.

E. Compliance First, Robustness Second

In addition to the scope of the analysis, the sequence of the
aspects to be analysed should be optimised. As described above,
software should meet basic quality requirements, such as
maintainability before it makes sense to dive into the subtleties
of the CIA triad. After all, it is easier to recognise and address
the corner cases in a well-structured design, which reduces the
learning curve (M6). The horizontal dimension in Figure 1
represents this order exactly. Thus, the aspects should be
analysed in the following order:

(1) local quality,

(2) local robustness,

(3) quality of integration,
(4) robustness of integration.

A second reason for this order is the advantage of a faster
analysis when no proofs are (yet) required; see also II.C.
Following this order also avoids unnecessary waiting times
(M2). Conducting a robustness analysis would be inefficient if
the software still has many defects, which can be discovered
with more lightweight tools.

Finally, there is also an evidence-related reason why a
robustness analysis only makes sense affer the code quality is
decent: Too early use of sound tools can lead to incomplete
analysis results when “undefined behaviour” is still present in
the program. Since the program state is undefined at such
locations, a sound analysis must stop tracking offending control
flows and thus can hide downstream defects (M7). We have
explained this in more detail in [16].

F. Granularity and Frequency of Changes

Both DevOps and TPS require small and frequent changes to
avoid overproduction (M1) and minimise inventory (M5). In

©2023 The MathWorks, Inc.

addition to making root cause analysis easier in the case of a
failing gatekeeper (e.g., git blame), this also shortens response
times between the creation and detection of integration defects,
making bug fixes (M7) easier. In particular, integration analysis
should happen periodically (e.g., every night) and not only once
at the end of the release cycle.

To ensure that the effort required does not grow
proportionally with the analysis frequency, SAST tools must be
able to track defects across successive analyses and code
changes, and offer an incremental review. Specifically, metadata
related to defects (e.g., comments or assignments to developers)
must be automatically transferred to subsequent integration
analyses since otherwise repeated review activities result in
waste (M4). Furthermore, an “old/new” logic should also be
available, and comparisons between any two analyses should
facilitate spotting trends and narrow down defect occurrences in
terms of time.

V. ONE CONCRETE WALKTHROUGH

We now briefly show how the ideal tool chain for cybersecurity
can look like using Polyspace Bug Finder™ [17] to check basic
code quality and Polyspace Code Prover™ [18] for
comprehensive proof of robustness. An overview is shown in the
following figure:

Team Lead QA

AR

O ©

TN N
2 () 3 4, (]
—commit—» .4, —iigger—»| Cl System —publish—» gaqt

repo results
. J o /

Developer T —
1 Fast Deep \
SAST SAST

bug tracker

(catch most defects) (catch remaining defects)

Figure 4: An optimally balanced SAST toolchain.

Pre-commit (1). The code is ideally analysed in early
development phases within the developer’s IDE (e.g., Microsoft
VS Code™). Polyspace as You Code is used here to provide fast
feedback about CERT C violations, CWEs, and other defects.
The analysis is limited to individual files specifically, so
developers are not slowed down. Setup efforts are minimal since
the tool obtains all necessary information (e.g., compiler,
include paths, etc.) directly from the IDE. Figure 5 shows how
Polyspace as You Code warns the developer about an
incompletely initialised variable (abs control output),
which is a CERT C violation. Although the variable is written in
the if-else block starting at line 87, the predicates do not cover
all possible conditions. The developer can react immediately and
prevent a potential vulnerability while working on the algorithm.

Furthermore, integration defects are specifically hidden in
the IDE to prevent overprocessing (M4): defects resulting from
external input values (e.g., overflows and invalid pointer
arguments) could otherwise not be evaluated without
considerable effort. The integration context would have to be
reproduced as accurately as possible to do this. However, this
would only make sense if the recreated context was also verified,
which can be solved more efficiently in the next step. If desired,
a local robustness analysis using Polyspace Code Prover™ can
take place at this point as soon as the quality requirements are
covered.

www.embedded-world.eu

~ 4 ~ EXP33-C Do not read uninitialized memory p

X Pmaster & ®25A2 (@ CMake:[Debugl:Ready 3 [GCCB20mingw3?] & Build [al] & D
Figure 5: SAST tool “Polyspace as You Code” points out security
vulnerabilities early and within seconds in your IDE (here: Microsoft VS
Code™. Screenshot used with permission from Microsoft).

Post-commit (3). Integration analysis does not lie in the
responsibility of individual developers and therefore is triggered
centrally via CI systems, such as Jenkins™ or Zuul™,
performing more comprehensive analyses. The analysis setup
takes place automatically as before, this time by hooking into
build systems such as cmake™, bazel™, or similar. Only the
desired checks must be selected, which can be done with XML
files. With this post-commit step, we can achieve up-to-date,
comprehensive, and consistent verification of all code changes.

Both quality and robustness must be checked as before.
Robustness analyses in the integration context provide the
definitive final evidence but typically require more waiting time
than all analyses done up to this point. Therefore, the robustness
analysis at the integration level should be performed last but
crucially still regularly (e.g., nightly checks) to avoid late and
expensive defects.

To limit technical debt (see IV.C), analyses can be
automatically evaluated in the CI/CD system, and CI jobs can be
conditionally failed with errors when certain criteria are not met
(e.g., too many new defects, or violation of certain CERT C
rules, too complex functions).

©2023 The MathWorks, Inc.

Teamwork and Interactive Review (5). The resulting
findings of CI/CD should also be well visualised for efficiency
(P7) and allow developers to work together to find a solution.
Figure 6 shows an integration defect in the browser-based
centralized review system Polyspace Access™ [19]. The review
system collects analysis results from the CI runs and provides
the entire team with trends, comparisons, and task assignments.
Defects are explained through interactive elements in an easily
understandable way and do not have to be reproduced again in a
time-consuming way. The picture shows a division by zero in
pi utils.c, caused by a call from a second file, pi_alg.c.It
would not make much sense to show this finding to the
developer of the first file before the commit since the context
would have been missing here, and one could easily have
misinterpreted this warning as a false positive. On the other
hand, the integration analysis provides a concrete example of
how the defect occurs and allows the affected developers to meet
in the browser interface, agree on possible measures, and open a
bug tracker ticket if desired.

If subsequent integration analyses occur, Polyspace Access
automatically propagates the review information to newer
results to avoid costly re-work (M3). Furthermore, developers
can show or hide issues found during integration analyses during
the early analyses within the IDE, enabling them to focus on
their local defects and to see the appropriate context for each
issue while bug-fixing and hiding “old acquaintances.”

VI. BEYOND THE PROCESS

Process is not everything. Even the best tools and processes do
not protect against all errors (typical limits of SAST tools are
discussed in [16]). In addition to the individual programmers,
the entire team and the organization must also learn if they really
want to exploit the benefits of TPS and DevOps. Therefore,
additional measures are necessary for the areas of corporate
philosophy, people and partners, and problem-solving behaviour
(see the TPS principles in Table 1).

Those additional principles are beyond the scope of this
paper. However, the following three are worth highlighting:

(1) Hansei and Kaizen — Look back and continuously
improve (P14): Occurring problems must be analysed
down to their root cause (blame-free), and appropriate
countermeasures defined for the future. Fixing symptoms
is insufficient. In terms of cybersecurity and SAST, this
can mean that security vulnerabilities are discussed in a
non-judgmental manner in the team; and to check
whether software architecture, incorrect use of tools,
incomplete solution strategies, or incorrect assumptions
may cause the problem to happen again. The team selects
one or more problem-solving techniques (e.g., Five
Whys, Ishikawa Diagrams, etc.) for this. Suitable
solutions and best practices (P6) must also be documented
so that improvement can take place.

(2) Decide with consensus (P13): Once the problem has
been identified, all possible solution strategies should be
considered, all necessary data should be collected, and a
solution should be agreed upon by the entire team based
on the facts. Only then is a solution implemented that can
be achieved with team reviews, among other things, as
explained in the previous section.

=, mathworks.com

= h 2

REVIEW [2] mbecker ~
oV i 4 Code Metrics = - -
‘L(,‘:J Current| 1D 11978 - Job HEA... ‘ v @ @ - [‘——’\l, E— S— Show only| Comment, filename, etc
Dashboard ‘ ~ | Apply/Manage dlied e T [Filter out | Comment, filename, etc.
APPS RUN CUSTOM FILTERS FAMILY FILTERS FILTERS
Showing: 20 / 407 | Defects AND ToDo &
Results List Code Search Call Hierarchy Source Code
E Family Type Group Check Information L+] pi_utils.c pi_alg.c
9 O Defects Good practice Line with more than one... Impact: Low 2 { -
& i ‘ : 21 pY = pYData[e];
] O Defects Security Inappropriate I/O operat... Impact: Medium 2}
= 3
2 O Defects Numerical Float division by zero Impact: High 23 ‘Else
= . 24
8 O Defects Good practice Unused parameter Impact: Low 25 /* Determine index of output into pYData based on :
o N
O Defects Good practice Unused parameter Impact: Low 26 float32 uAdjusted = u - map.valuelo;
N - _ . . . v 27 float32 ilLeftFloat = (uAdjusted / map.uSpacing);
4 ' 28 uint32 ileft = (uint32) ileftFioat;
= Result Details 29
B == = 30 /* If input is above range of lookup table, output
g SES] Sfx ||(D)] W] Variable trace pi_utils.c / look_up_even() 31 if (iLe'FE >= map.iHi) & P ’ P
= Status 2
o i . (%) (8 - 33 pY = pYData[map.iHi];
& o _F!oat division by zero (Impact: High) (2) (&) Unreviewed o } 5
__ Division by zero. .
b= Severity 36 /* If input is in range of lookup table, output wi:
o Event File Scope © High 37 else
; 1 Entering function ‘process_inp... pi_task.c control_t... Assigned to ii {
$ 2 Entering function 'look_up_even' pi_alg.c process... Type usema“ - 40 float32 lambda; /* fractional part of differet
E Use of variables 'u' and 'map’ pi_utils.c look_up... i 41
— " . S -~ Ticket 42 float32 num = (uAdjusted - (((floaf
Use of variables 'u' and 'map’ pi_utils.c look_up... 5‘}'67 = lambda = (num/map.uSpacing);
3 = . H
3 O Float division by zero pi_utils.c look_up... - a4
Comment 45 float32 vlLeftCast: /* table value

Figure 6: Integration defects are forwarded from the CI/CD system to the browser-based team review, where developers can manage defects and collaborate.

(3) Develop teams (P10): Value is created by people, not by
processes. We have already elaborated on how individual
developers can improve their skills using SAST tools.
However, an experienced team is more than the sum of
its parts. Together, team members coordinate, learn from
each other, and set goals for continuous improvement. In
the context discussed here, one option would be
successively tightening the gatekeepers so that all
developers learn, but no one is overwhelmed. For this
purpose, Polyspace Access offers freely definable quality
levels (Software Quality Objectives [20]). These can be
increased step-by-step until release, and the team can
track how far their software has attained the defined
quality and robustness goals in the dashboard.

For further information on the TPS principles and practical
examples, we would like to refer interested readers to our
primary source [4]. In summary, teams should not only define
their process but also make sure they improve it continuously.

VIL

Developing secure software in a short time may seem like a
contradiction. However, it all depends on the process and
culture, as we have shown. A well-balanced workflow can
identify vulnerabilities early (Shift Left) yet without burdening
the developers and testers, and reliably spots programming
errors and vulnerabilities. The key is to avoid unnecessary effort
(“waste”), which requires selecting the right verification
method, the right tools, and the right scope at each point in time.

CONCLUDING REMARKS

©2023 The MathWorks, Inc.

Static Code Analysis (SAST) tools are an effective way to
address cybersecurity challenges in software development.
These tools enable teams to identify security vulnerabilities in
an automated and consistent way. However, analysing for
compliance to CERT C or finding weak patterns is not enough
to satisfy the CIA Triad; strong evidence of robustness is
required. Such evidence can be provided by sound SAST tools
and helps closing security gaps that the guidelines leave open.
SAST tools can also provide developers with continual feedback
on the quality of their work, enabling them to improve their
skills over time, deliver more secure software, and minimize
unnecessary efforts for additional design iterations.

Finally, the principles described here can and should extend
to other design and verification tools to reduce overall waste, and
foster individual and organizational learning. Security cannot be
achieved with one method only but requires a concerted effort
and a deliberately chosen process.

VIII. REFERENCES

[1] Upstream Security Ltd, "Global Automotive Cybersecurity Report,"
Upstream, 2022.

[2] International Electrotechnical Commission, [EC-62443-4, Security for
industrial automation and control systems, 2018.

[3] RTCA, DO-356, Airworthiness Security Methods and Considerations,
2018.

[4] J. Liker, The Toyota Way, McGraw-Hill, 2004.
[5] Puppet, State of DevOps Report, Portland, USA, 2021.

www.embedded-world.eu

[6] Wikipedia, "Meltdown (security vulnerability)," [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Meltdown_(security vulner
ability)&oldid=1040587365. [Accessed 1st Oct 2021].

[7] CMU Software Engineering Institute, “SEI CERT C Coding Standard,”
[Online]. Available: https://wiki.sei.cmu.edu/confluence/display/c.
[Accessed 1st Oct 2021].

[8] D. Papp, Z. Ma and L. Buttyan, “Embedded systems security: Threats,
vulnerabilities,” in Conference on Privacy, Security and Trust (PST),
2015.

[9] S. Samonas and D. Coss, "The CIA Strikes Back: Redefining
Confidentiality, Integrity and Availability in Security," Journal of
Information System Security, vol. 10, no. 3, pp. 21-45, 2014.

[10] SAE International, ISO/SAE 21434 Road Vehicles Cybersecurity
Engineering, 2021.

[11] M. Leszak, D. Perry and D. Stoll, “Classification and evaluation of
defects in a project retrospective,” Journal of Systems and Software,
vol. 61, no. 3, pp. 173-187, 2002.

[12] L. Williams, R. Kessler, W. Cunningham and R. Jeffries,
"Strengthening the case for pair programming," /EEE Software, vol.
17, no. 4, pp. 19-25, 2000.

[13] G.J. Myers, C. Sandler and T. Badgett, The art of software testing.,
John Wiley & Sons, 2011.

[14] RTI, "The Economic Impacts of Inadequate Infrastructure for Software
Testing," NIST, 2002.

[15] C. Fishman, "They Write the Right Stuff," Fast Company, 31 12 1996.
[Online]. Available: https://www.fastcompany.com/28121/they-write-
right-stuff. [Accessed 02 09 2021].

[16] M. Becker and J. Palczynski, "Increasing Resilience to Cyberattacks
through Advanced Use of Static Code Analysis," in Embedded World
Conference, Nuremberg, 2021.

[17] The MathWorks Inc., "Polyspace Bug Finder," 18 Oct 2021. [Online].
Available: https://www.mathworks.com/products/polyspace-bug-
finder.html.

[18] The MathWorks Inc., “Polyspace Code Prover,” 18 Oct 2021. [Online].
Available: https://www.mathworks.com/products/polyspace-code-
prover.html.

[19] The MathWorks Inc., "Polyspace Access," 18 Oct 2021. [Online].
Available: https://www.mathworks.com/products/polyspace-code-
prover.html#access.

[20] The MathWorks, Inc., "Software Quality Objectives for Source Code,"
2010. [Online]. Available:
https://www.mathworks.com/discovery/software-quality-
objectives.html. [Accessed 20 Oct 2021].

[21] K. Goseva-Popstojanova and A. Perhinschi, “On the capability of static
code analysis to detect security vulnerabilities,” Information and
Software Technology, vol. 68, 2015.

© 2023 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See mathworks.com/trademarks for a list of additional trademarks.

Other product or brand names may be trademarks or registered trademarks of their respective holders.

