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Abstract—Developing and maintaining secure software is 

essential for modern safety-critical systems but is also a 

challenging problem for agile development teams. Proven security 

and fast development are natural antagonists which must be 

reconciled to minimize vulnerabilities while guaranteeing a fast 

response to cyber incidents. In this paper, we highlight the most 

common problems in this context and show a proven strategy that 

makes "agile security" an achievable routine. The proposed 

strategy is based on the best practices of industry leaders from 

various application domains and their use of static code analysis 

at the right time and with the right scope and depth. It addresses 

the well-known resource problem (who does security and when?), 

the learning problem (how do developers learn, how do teams 

improve?), and how to deliver sufficient and consistent security 

evidence. With a clever balance of tools, automation, and 

feedback, cybersecurity can be quantified, incrementally 

improved, and delivered on time.  

Keywords—DevSecOps, cybersecurity, agile, formal verification, 

static code analysis, waste, efficiency 

I. INTRODUCTION 

Cybersecurity is a big challenge for today's software, with more 
and more attacks aiming at embedded systems. For example, the 
number of cyber incidents in automotive systems has more than 
doubled from 2021 to 2022, with 89% of attacks involving 
embedded systems [1]. The goal of cybersecurity is to protect 
the system from its environment, to resist such attacks and 
prevent malicious access. This contrasts with functional safety, 
which vice versa seeks to protect the environment from system 
malfunctions. Although it seems that cybersecurity is the less 
critical among these two, it is important to understand that 
unprotected access can lead to undesired control over the system 
and impair functional safety. Therefore, cybersecurity is not 
only an add-on, but the foundation for functional safety. 

Attacks on embedded systems are not fundamentally new, 
but until recently were not explicitly addressed in most industry 
standards. Traditional safety analysis, founded on probabilities 
and statistics (e.g., Fault Tree Analysis), falls short for 

cybersecurity. Attackers often actively search for security issues 
with massive expenditure of resources. Therefore, it is not the 
probability that counts for security, but the feasibility. Especially 
safety-critical software must function correctly even in unlikely 
situations, which means that malicious attacks must be explicitly 
considered during system design. Several newly published 
standards, such as ISO/SAE 21434 , IEC-62443 [2], and DO-
356 [3], fill this gap now with new security requirements. 

Developers, integrators, product managers, and other 
contributors must familiarise themselves with this new topic and 
follow these latest standards and regulations. However, only few 
cybersecurity experts are available in the job market, and most 
do not have the technical background of the respective 
application. Apart from a reliable process, a way must be found 
to transfer this knowledge to existing domain experts. 
Furthermore, any security vulnerability discovered must be 
closed quickly to limit financial, operational, safety, and privacy 
damage. In summary, the development process must not “only” 
satisfy new security requirements, but must also be more agile 
than before.  

Figure 1: Optimal Workflow: Quality first, robustness second - local first, 

global second. Most iterations take place early and on small units. 
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In this paper, we show how an optimal development process 
for cyber-secure software can meet these new requirements and 
simultaneously enable significant quality improvements. We 
focus on the efficient assurance of quality using Static Code 
Analysis. Our methods are based on the proven principles of 
DevOps and the Toyota Production System. Both aim to 
establish quality as early as possible (Shift Left) while shortening 
development cycles and reducing costs. Essential elements 
include avoiding unnecessary work, automation, and individual 
and organisational learning. More details are provided in the 
following sections.  

The principles shown here lead to higher software quality in 
less time [4], [5] as observed by the authors and as 
comprehensively documented in literature [4], [5]. 

II. NEW CHALLENGES FROM CYBERSECURITY 

As explained earlier, cybersecurity cannot be adequately 
covered by traditional methods and processes as explained 
earlier. Therefore, we first highlight the new challenges that 
many development teams are currently facing. 

A. Updates Must Be Expected 

Software considered secure today may already be insecure 
tomorrow. One obvious reason is that weaknesses can be missed 
during development and discovered only during operation. 
Another reason is that vulnerabilities may stem from external 
sources. For example, the “Meltdown“ vulnerability was caused 
by a hardware design flaw, but demanded software updates since 
only hardware platforms could be fixed by firmware updates [6]. 
Therefore, even with “perfect” software, we must anticipate 
updates to patch newly identified security vulnerabilities.  

These updates may require multiple iterations through the 
development process (see Figure 3), which is why even minor 
inefficiencies can accumulate exponentially higher costs. A 
good analogy to this cost increase is the compound interest effect 
known from mortgage loans – a seemingly small price which is 
paid frequently, can accumulate to a major penalty over time. 
An effective process, maintainability, and modularisation of the 

software are crucial to avoid this. These aspects are part of 
fundamental software quality and become the basis for 
maintaining cybersecurity throughout the product lifecycle. As 
discussed next, programming guidelines offer an approach to 
achieving this fundamental quality. 

B. Compliance with Programming Guidelines Is Insufficient 

Programming guidelines such as MISRA C or CERT C [7] and 
avoiding dangerous code patterns (CWEs) reduce the potential 
for errors during development and contribute significantly to 
code quality. However, compliance with these guidelines is only 
weak evidence for cybersecurity. They cannot guarantee that the 
software works reliably in all corner cases [8] since they mainly 
focus on bad design patterns.  

(1) confidentiality (data is kept secret or private),  
(2) integrity (data is trustworthy and free from tampering),  
(3) availability (software works as and when expected). 

These properties are also known as the CIA Triad [9], an integral 
part of the new cybersecurity standards and regulations [10] [3]. 
Covering the CIA Triad requires additional evidence achieved 
through additional verification methods. 

C. Evidence Requires (Waiting) Time 

Obtaining strong security evidence takes time. The more 
confidence is required, the more verification time must be 
invested, especially as code complexity increases. Thus, we 
have the choice between fast yet weak results or more time-
consuming but stronger results. The former may be incomplete 
and may result in several design iterations. On the other hand, 
the latter may require more initial effort from developers and 
testers but fewer iterations to fix all programming errors.  

Theoretically, development could happen in parallel with 
verification, separating both efforts to a certain degree. For 
example, developers could work on the next feature while their 
latest changes are under verification. However, any software 
changes may lead to stale verification results. Consequently, 
development and verification must be at least partially 
sequential, requiring a clever balance between speed and depth 
of verification activities.  

D. Who Trains the Developers? 

In principle, independent from cybersecurity, there is also a 
resource and learning problem: People make mistakes. Because 
of the broad nature of cybersecurity, the resulting defects can no 
longer be identified and resolved by a small QA team. Research 
shows that most defects are due to individual mistakes and lack 
of knowledge [11], so it is worth starting here. Every single 
developer must write secure code from the beginning. 

But how can developers identify errors that can lead to 
security vulnerabilities and learn from them as early as possible 
and systematically? Possible answers are code review and pair 

Figure 2: Exemplary software development process. The amount of non-value-added time (“muda”) is usually dominant. 

Figure 3: Cybersecurity requires regular and thus repetitive development 

processes, illustrated here by the example of the V-model. 
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programming [12], but these do not work as well in 
cybersecurity. There are not enough security experts to make 
this a viable approach. Moreover, it is well-known that humans 
are ill-suited to mentally consider all corner cases, write 
comprehensive tests, and reliably determine the absence of 
defects [13]. Therefore, code review and pair programming are 
typically focused on architectural decisions and functional 
correctness and are ill-suited to cover cybersecurity. 

Finally, developers typically get quality feedback with a time 
delay, which is a problem. For example, this can happen when 
integration problems arise or even during the running operation 
of the product. Not only do developers lack a sense of the 
completeness of security properties or the effectiveness of 
hotfixes, but overall costs are disproportionately increased by 
late discovery [14]. 

 
Summary: Cybersecurity requires demonstrably robust and 
maintainable code in a short time. The development process 
must be designed so that as few iterations as possible take place 
and are terminated as soon as sufficient evidence for security 
properties is obtained. Towards this, developers must be trained, 
and their work made measurable. Nevertheless, there must be 
room for flexibility along the way so that new features can be 
implemented quickly. While cybersecurity must be a part of 
every process step, it must not slow the process down 
unnecessarily. These goals coincide with the principles of two 
well-known production systems, which we will explain in more 
detail in the following section. 

III. WHAT MAKES AN EFFICIENT PROCESS? 

The Toyota Production System (TPS [4], also known as Lean in 
Western cultures) describes practices that have been applied 
successfully for decades, reconciling quality and development 
speed with maximum resource efficiency. These practices 
started in vehicle manufacturing (Toyota) but have long reached 
other disciplines, such as software development. Close relatives 
are the more recent DevOps practices, which are strongly 
influenced by TPS and continue the success story. The practices 
focus on company philosophy, culture, and process. However, 
they do not prescribe specific tools or workflows but build on 
basic principles which each company must realise in its way.  

Many teams already know that such practices help them to 
achieve their goals. Results are among others [4] [15] [5]: 

(1) Shorter development times for new features. 

(2) Fewer defects and higher reliability. 

(3) Shorter response times for hotfixes. 

(4) Significantly higher profits. 

In this paper, we focus on TPS because it is more detailed 

than the more common DevOps and includes the latter at its 

core. Thus, the strategies described here apply to both worlds. 

A. Avoiding Unnecessary Effort (Muda) 

The central objective in TPS is avoiding unnecessary effort or 
waste — Muda. Specifically, Muda is defined as any activity 
that does not directly contribute to product value from the 
customer's point of view. Examples are rework caused by 
defects, waiting times, the development of components that do 
not go into the product, and tasks that serve the preparation 
(setup of tools) or the handover (reviews and approvals). 

The share of value-adding efforts in a software development 
process is only small, as shown in Figure 2. Each step is shown 

only once, but software development is typically iterative, which 
makes Muda even more important. For example, we must repeat 
the steps to set up a branch (or at least check it out), develop the 
fix, commit, re-test, and so on if a defect is found. The entire 
process must be repeated many times before the software is 
ready, which further exacerbates Muda. While this is 
unsatisfactory, it is also an opportunity that TPS and DevOps are 
taking on. 

B. Unnecessary Effort (Muda) in Software Development 

The TPS [4] defines seven types of muda, which can be mapped 
to software development as follows: 

(M1) Overproduction (e.g., useless features, increasing 

almost all other types of muda). 

(M2) Waiting time (e.g., for compilation, automatic 

testing, or computational resources). 

(M3) Transport (e.g., handover/handoff, or even data 

transfer, causing time loss). 

(M4) Overprocessing [e.g., higher complexity than 

needed, due to bad or needlessly complex design — 

causes time loss and increases (M7)]. 

(M5) Large inventory (e.g., work-in-progress such as 

numerous half-finished features or hotfixes, 

increasing risk of obsolescence, conflicts, and 

defects). 

(M6) Setup/use workstation (e.g., switching between 

branches, which takes both mechanical setup work 

and time to mentally switch context). 

(M7) Defects require bug fixes, retesting, etc. and it is well 

documented that defects found late are 

disproportionately more expensive to fix [14]. 

Note that some activities may be considered Muda by 
definition, yet may still be unavoidable (e.g., process reasons, 
compliance reports). The updates already mentioned are another 
example. In theory, these are unnecessary because with 
complete information about the future, attacks could be foreseen 
from the start and the software developed accordingly. For such 
“useless” activities, we follow the maxim: As efficiently as 
possible, as rarely as necessary. 
 Some principles have been defined in TPS and DevOps (see 
Table 1) to systematically minimize the waste described above, 
which we will discuss later at the appropriate point. 

Table 1: The 14 Principles of the Toyota Production System [4]. 

Aspect Principles 

Philosophy P1: Take long-term management decisions 

Process P2: Implement a one-piece flow 

P3: Use pull systems 

P4: Heijunka – levelled workload 

P5: Jidoka – built-in quality 

P6: Standardize work 

P7: Visual management 

P8: Use reliable and proven technology 

Human and 

Partners 

P9: Grow leaders who understand 

P10: Grow exceptional people and teams 

P11: Respect network of partners and suppliers 

Problem 

Solving 

P12: Genchi genbutsu - go see for yourself 

P13: Take decisions slowly by consensus 

P14: Hansei and Kaizen – reflect and improve 
 



©2023 The MathWorks, Inc. 

IV. THE IDEAL WORKFLOW 

In this section, we introduce an ideal software development 
workflow that minimizes useless effort and addresses the 
aforementioned challenges of learning problem, resource 
problem, and sufficient evidence for cybersecurity. It also 
reconciles high software quality with fast development cycles. 
The focus lies on the implementation and verification of the 
source code.  

We rely on a balanced combination of pre-commit and post-
commit code scans using Static Code Analysis tools. The pre-
commit analysis should run fast and with limited context, 
complemented by an automated CI job (Table 1, P2) which runs 
after the commit and performs a comprehensive proof in the 
integration context. This approach is both reasonable and 
efficient, as we will explain next.  

A. Proofs: Sound Static Application Security Testing (SAST). 

As discussed in Section II.B, adherence to coding guidelines is 
generally insufficient to achieve cybersecurity because rare or 
unexpected usage patterns are usually absent from functional 
tests, thus inadequately covering the CIA Triad. What is needed 
here are “negative tests” beyond the specification. Ideally, all 
possibilities should be covered entirely, providing strong 
evidence for robustness. Consequently, methods particularly 
suitable for cybersecurity should be able to: (1) identify rare and 
non-intuitive program states, (2a) prove the fulfilment of the 
CIA properties with sufficient evidence, or (2b) conversely 
show defects by providing concrete examples. Security then 
becomes measurable. Such methods exist in the form of static 
code analysis tools (SAST), which are sound (i.e., which 
consider all reachable program states without missing “bad 
cases”). We have detailed the advantages over other tools that 
merely check guidelines in [16]. 

B. Before Commit: Shift Left Using SAST 

It is well known that early verification saves time and costs [14]. 
Security vulnerabilities can be detected and fixed while being 
introduced (Shift Left, P5) if SAST is applied before the commit, 
reducing useless effort for later repair (M7). Furthermore, 
transport (M3) is also minimised since the handover for 
integration (commit, review) has to be repeated less often.  

Specifically, secure coding guidelines such as CERT C and 
the absence of safety-critical code patterns (CWEs) should be 
checked early, and so should robustness in corner cases (see 
above). We will detail the correct sequence later. It is important 
to cover both to meet cyber-security; see also II.B. 

The tools which are used should also minimise the 
developer's effort. They should be well integrated into the 
development environment and support the automatic setup of the 
analyses based on the build environment, thereby reducing setup 
effort and context switching times (M6). They reduce the time 
required to fix defects (M7) by providing detailed explanations 
for the identified security vulnerabilities. Finally, SAST tools 
must have short response times at the developer's end to 
minimise waiting times (M2). 

The Learning Problem: In the context of Shift Left, SAST 
can also significantly facilitate familiarising developers with the 
topic of cybersecurity. While pair programming and code 
reviews are insufficient due to human limitations and lack of 
experience (see above), the “expert in the computer” reliably 
closes this gap. SAST can provide rigorous and valuable 

feedback to developers by working consistently, not missing 
defects due to human limitations, and acting on security 
knowledge built into the tool. It provides an initial assessment of 
code quality within seconds by seamlessly integrating into the 
programming environment and uncovers poor programming 
patterns as well as potential security vulnerabilities.  

Over time, individual developers will learn and deliver more 
robust software in a shorter time. Developers can recognise their 
areas of improvement and reduce errors in the first place by 
applying the tools repeatedly. Developers profit further from 
increased confidence that their contributions are robust and 
ready for integration. 

C. After Commit: Less Technical Debt Thanks to SAST 

To complement early verification, automated SAST analysis 
should take place after each commit. The goal is to verify all 
contributions consistently and in the same target environment 
(no more “works for me”) and ensuring minimum quality before 
or when the code is integrated. This principle is also known as 
gatekeeper or quality gate and can be extended to automated 
approvals and merges to improve “flow” (P2). 

In the event of a “bad” commit, gatekeepers can also 
implement the principle of Jidoka (P5), which means “stop, get 
together and solve”. This is achieved with the “Andon Chord” at 
Toyota, a rope that runs along the production line. If a worker 
detects a serious problem, she can pull this rope, resulting in a 
full stop of the production line after a short grace period [4]. All 
workers can then come together and focus on solving the 
problem and preventing defects (M7) from being passed 
downstream, which would result in even higher costs later. It 
also prevents similar problems from recurring and not being 
solved (M3), (M6). It is important to follow up on such incidents 
by identifying and analysing the root cause (P14) and defining 
suitable best practices (P6) to avoid identical errors in the future. 
These practices will lead to efficiency gains by gatekeepers in 
the long run. For our software development, this can mean 
enabling additional SAST checks before the commit or 
introducing appropriate coding guidelines. 

D. Scope and Ownership 

However, Shift Left should not be carried too far because this 
would also lead to Muda. Instead, the scope of analysis should 
always fit the particular process step. In brief: You should only 
analyse what you are allowed to change.  

A typical mistake with Shift Left is all-encompassing early 
verification, for example, workflows in which each developer 
performs integration-level analyses before committing. First, 
this approach appears plausible as it allows catching as many 
defects as possible early, but it causes unnecessary waiting times 
(M2) because the analysis produces results that the developer 
cannot address and will thus ignore. Second, issues may be fixed 
in a suboptimal way, as some findings will be interface problems 
that usually affect several stakeholders and should therefore be 
discussed together. Third, even if the cause of the interface issue 
is obvious, the developer may take measures resulting in 
superfluous code in the later integration context because changes 
in the surrounding code may fix it automatically. One example 
is redundant defensive coding when the input parameters are not 
yet known but the final implementation only uses input 
parameters that do not lead to an error. In this case, redundant 
defensive coding may lead to performance degradation during 
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runtime. This all results in overprocessing (M4) due to too much 
Shift Left. And finally, comprehensive early analyses may also 
lead to developers not accepting or even rejecting the analysis 
tools. If a SAST tool lacks context and flags too many 
constructs, developers may ignore its warnings (“I know better”) 
or may not use the tool at all (“too noisy”). In both cases, one 
can expect more defects (M7), and wasted learning potential. 

The correct approach here is a clever balance again, as 
shown in Figure 1: Before the commit (the lower half plane in 
the figure), only the developer’s respective working package 
(e.g., unit, module) should be analysed. This routine shortens 
analysis time (M2) and keeps developers’ focus in their 
“territory,” where they can immediately make corrections or 
document intentional deviations from guidelines with the 
rationale still present. A focused analyses SAST tool must not 
display issues that depend on external data or control flows to 
avoid overprocessing (M4) due to lack of context.  

On the other hand, a complete integration analysis should 
occur after the commit, detecting the (few) remaining defects, 
typically only interface and integration issues. Since integration 
issues affect multiple parties (shared ownership, upper half plane 
in the figure), the tool should allow for sharing of the analysis 
results and facilitate discussions on the issues found as reflected 
in the TPS principle “Decide with Consensus” (P13). 
Consequently, SAST tools meant for this scenario should offer 
tracking, commenting, and assigning of issues, and ideally, a 
connection to external bug tracking tools. 

E. Compliance First, Robustness Second 

In addition to the scope of the analysis, the sequence of the 
aspects to be analysed should be optimised. As described above, 
software should meet basic quality requirements, such as 
maintainability before it makes sense to dive into the subtleties 
of the CIA triad. After all, it is easier to recognise and address 
the corner cases in a well-structured design, which reduces the 
learning curve (M6). The horizontal dimension in Figure 1 
represents this order exactly. Thus, the aspects should be 
analysed in the following order:  

(1) local quality,  
(2) local robustness,  
(3) quality of integration,  
(4) robustness of integration. 

A second reason for this order is the advantage of a faster 
analysis when no proofs are (yet) required; see also II.C. 
Following this order also avoids unnecessary waiting times 
(M2). Conducting a robustness analysis would be inefficient if 
the software still has many defects, which can be discovered 
with more lightweight tools. 

Finally, there is also an evidence-related reason why a 
robustness analysis only makes sense after the code quality is 
decent: Too early use of sound tools can lead to incomplete 
analysis results when “undefined behaviour” is still present in 
the program. Since the program state is undefined at such 
locations, a sound analysis must stop tracking offending control 
flows and thus can hide downstream defects (M7). We have 
explained this in more detail in [16]. 

F. Granularity and Frequency of Changes 

Both DevOps and TPS require small and frequent changes to 
avoid overproduction (M1) and minimise inventory (M5). In 

addition to making root cause analysis easier in the case of a 
failing gatekeeper (e.g., git blame), this also shortens response 
times between the creation and detection of integration defects, 
making bug fixes (M7) easier. In particular, integration analysis 
should happen periodically (e.g., every night) and not only once 
at the end of the release cycle.  

To ensure that the effort required does not grow 
proportionally with the analysis frequency, SAST tools must be 
able to track defects across successive analyses and code 
changes, and offer an incremental review. Specifically, metadata 
related to defects (e.g., comments or assignments to developers) 
must be automatically transferred to subsequent integration 
analyses since otherwise repeated review activities result in 
waste (M4). Furthermore, an “old/new” logic should also be 
available, and comparisons between any two analyses should 
facilitate spotting trends and narrow down defect occurrences in 
terms of time. 

V. ONE CONCRETE WALKTHROUGH 

We now briefly show how the ideal tool chain for cybersecurity 
can look like using Polyspace Bug Finder™ [17] to check basic 
code quality and Polyspace Code Prover™ [18] for 
comprehensive proof of robustness. An overview is shown in the 
following figure: 

Pre-commit (1). The code is ideally analysed in early 
development phases within the developer’s IDE (e.g., Microsoft 
VS Code™). Polyspace as You Code is used here to provide fast 
feedback about CERT C violations, CWEs, and other defects. 
The analysis is limited to individual files specifically, so 
developers are not slowed down. Setup efforts are minimal since 
the tool obtains all necessary information (e.g., compiler, 
include paths, etc.) directly from the IDE. Figure 5 shows how 
Polyspace as You Code warns the developer about an 
incompletely initialised variable (abs_control_output), 

which is a CERT C violation. Although the variable is written in 
the if-else block starting at line 87, the predicates do not cover 
all possible conditions. The developer can react immediately and 
prevent a potential vulnerability while working on the algorithm. 

Furthermore, integration defects are specifically hidden in 
the IDE to prevent overprocessing (M4): defects resulting from 
external input values (e.g., overflows and invalid pointer 
arguments) could otherwise not be evaluated without 
considerable effort. The integration context would have to be 
reproduced as accurately as possible to do this. However, this 
would only make sense if the recreated context was also verified, 
which can be solved more efficiently in the next step. If desired, 
a local robustness analysis using Polyspace Code Prover™ can 
take place at this point as soon as the quality requirements are 
covered. 

Figure 4: An optimally balanced SAST toolchain. 
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Post-commit (3). Integration analysis does not lie in the 
responsibility of individual developers and therefore is triggered 
centrally via CI systems, such as Jenkins™ or Zuul™, 
performing more comprehensive analyses. The analysis setup 
takes place automatically as before, this time by hooking into 
build systems such as cmake™, bazel™, or similar. Only the 
desired checks must be selected, which can be done with XML 
files. With this post-commit step, we can achieve up-to-date, 
comprehensive, and consistent verification of all code changes. 

Both quality and robustness must be checked as before. 
Robustness analyses in the integration context provide the 
definitive final evidence but typically require more waiting time 
than all analyses done up to this point. Therefore, the robustness 
analysis at the integration level should be performed last but 
crucially still regularly (e.g., nightly checks) to avoid late and 
expensive defects. 

To limit technical debt (see IV.C), analyses can be 
automatically evaluated in the CI/CD system, and CI jobs can be 
conditionally failed with errors when certain criteria are not met 
(e.g., too many new defects, or violation of certain CERT C 
rules, too complex functions). 

Teamwork and Interactive Review (5). The resulting 
findings of CI/CD should also be well visualised for efficiency 
(P7) and allow developers to work together to find a solution. 
Figure 6 shows an integration defect in the browser-based 
centralized review system Polyspace Access™ [19]. The review 
system collects analysis results from the CI runs and provides 
the entire team with trends, comparisons, and task assignments. 
Defects are explained through interactive elements in an easily 
understandable way and do not have to be reproduced again in a 
time-consuming way. The picture shows a division by zero in 
pi_utils.c, caused by a call from a second file, pi_alg.c. It 

would not make much sense to show this finding to the 
developer of the first file before the commit since the context 
would have been missing here, and one could easily have 
misinterpreted this warning as a false positive. On the other 
hand, the integration analysis provides a concrete example of 
how the defect occurs and allows the affected developers to meet 
in the browser interface, agree on possible measures, and open a 
bug tracker ticket if desired. 

If subsequent integration analyses occur, Polyspace Access 
automatically propagates the review information to newer 
results to avoid costly re-work (M3). Furthermore, developers 
can show or hide issues found during integration analyses during 
the early analyses within the IDE, enabling them to focus on 
their local defects and to see the appropriate context for each 
issue while bug-fixing and hiding “old acquaintances.” 

VI. BEYOND THE PROCESS 

Process is not everything. Even the best tools and processes do 
not protect against all errors (typical limits of SAST tools are 
discussed in [16]). In addition to the individual programmers, 
the entire team and the organization must also learn if they really 
want to exploit the benefits of TPS and DevOps. Therefore, 
additional measures are necessary for the areas of corporate 
philosophy, people and partners, and problem-solving behaviour 
(see the TPS principles in Table 1). 

Those additional principles are beyond the scope of this 
paper. However, the following three are worth highlighting: 

(1) Hansei and Kaizen – Look back and continuously 
improve (P14): Occurring problems must be analysed 
down to their root cause (blame-free), and appropriate 
countermeasures defined for the future. Fixing symptoms 
is insufficient. In terms of cybersecurity and SAST, this 
can mean that security vulnerabilities are discussed in a 
non-judgmental manner in the team; and to check 
whether software architecture, incorrect use of tools, 
incomplete solution strategies, or incorrect assumptions 
may cause the problem to happen again. The team selects 
one or more problem-solving techniques (e.g., Five 
Whys, Ishikawa Diagrams, etc.) for this. Suitable 
solutions and best practices (P6) must also be documented 
so that improvement can take place. 

(2) Decide with consensus (P13): Once the problem has 
been identified, all possible solution strategies should be 
considered, all necessary data should be collected, and a 
solution should be agreed upon by the entire team based 
on the facts. Only then is a solution implemented that can 
be achieved with team reviews, among other things, as 
explained in the previous section. 

Figure 5: SAST tool “Polyspace as You Code” points out security 

vulnerabilities early and within seconds in your IDE (here: Microsoft VS 

Code™. Screenshot used with permission from Microsoft). 
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(3) Develop teams (P10): Value is created by people, not by 
processes. We have already elaborated on how individual 
developers can improve their skills using SAST tools. 
However, an experienced team is more than the sum of 
its parts. Together, team members coordinate, learn from 
each other, and set goals for continuous improvement. In 
the context discussed here, one option would be 
successively tightening the gatekeepers so that all 
developers learn, but no one is overwhelmed. For this 
purpose, Polyspace Access offers freely definable quality 
levels (Software Quality Objectives [20]). These can be 
increased step-by-step until release, and the team can 
track how far their software has attained the defined 
quality and robustness goals in the dashboard. 

For further information on the TPS principles and practical 
examples, we would like to refer interested readers to our 
primary source [4]. In summary, teams should not only define 
their process but also make sure they improve it continuously.  

VII. CONCLUDING REMARKS 

Developing secure software in a short time may seem like a 
contradiction. However, it all depends on the process and 
culture, as we have shown. A well-balanced workflow can 
identify vulnerabilities early (Shift Left) yet without burdening 
the developers and testers, and reliably spots programming 
errors and vulnerabilities. The key is to avoid unnecessary effort 
(“waste”), which requires selecting the right verification 
method, the right tools, and the right scope at each point in time. 

Static Code Analysis (SAST) tools are an effective way to 
address cybersecurity challenges in software development. 
These tools enable teams to identify security vulnerabilities in 
an automated and consistent way. However, analysing for 
compliance to CERT C or finding weak patterns is not enough 
to satisfy the CIA Triad; strong evidence of robustness is 
required. Such evidence can be provided by sound SAST tools 
and helps closing security gaps that the guidelines leave open. 
SAST tools can also provide developers with continual feedback 
on the quality of their work, enabling them to improve their 
skills over time, deliver more secure software, and minimize 
unnecessary efforts for additional design iterations. 

Finally, the principles described here can and should extend 
to other design and verification tools to reduce overall waste, and 
foster individual and organizational learning. Security cannot be 
achieved with one method only but requires a concerted effort 
and a deliberately chosen process. 
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