
.

.

.

7

.

3

.

4

.

3

.

2

. 8. 4.
5

.

2

.

.

4

.

1

.

3

. 8.

7

.

5

.

2

.
1

. 4

.

.

7

.

3

.

4

.

9

.

8

.

1

.

2

.

5

.

3� � � �

� � � �

� � � �

� � � �

Waterloo File and Matrix Utilities
Project Waterloo classes and functions for partial i/o with huge data

sets in MATLAB®

Malcolm Lidierth
Wolfson Centre for Age-Related Diseases

http://sigtool.sourceforge.net/

Revised: 14th November 2011

http://sigtool.sourceforge.net/

Acknowlegements:

MATLAB code in this document was styled using Florian Knorn's
M-code LATEXPackage.

http://www.mathworks.com/matlabcentral/fileexchange/
8015-m-code-latex-package

The document was prepared using Pascal Brachet's TEXMaker
http://www.xm1math.net/texmaker/

Stefan Kottwitz for the Tikz code for the soduko cube that has been
modified here. For the original see

http://www.texample.net/tikz/examples/sudoku-3d-cube/

Special thanks to:
AccelerEyes for providing Jacket software in support of this project

http://www.accelereyes.com/

Oracle and Java are registered trademarks of Oracle and/or its affiliates.
MATLAB is a registered trademark of The MathWorks, Inc. Other names
may be trademarks of their respective owners.

2

http://www.mathworks.com/matlabcentral/fileexchange/8015-m-code-latex-package
http://www.mathworks.com/matlabcentral/fileexchange/8015-m-code-latex-package
http://www.xm1math.net/texmaker/
http://www.texample.net/tikz/examples/sudoku-3d-cube/
http://www.accelereyes.com/

Contents

The problem . 5
Benefits of partial i/o . 5
Partial i/o with random access 8

Example applications . 12
Dealing with a single huge variable 12
Dealing with many variables 13

A note on file formats . 15
Level 5 MAT-files (Version 6 and 7 files) 15
Level 7 MAT-files (Version 7.3 files) 16
HDF5 files . 16
Custom binary file formats 17

MATLAB support for partial i/o 17
What this library adds . 18
Convenience Functions . 20

getMap function . 20
getPartialMap function 21
copyTo functions . 22

The nakhur superclass . 23
What the nakhur superclass adds 23
The nmatrix class . 25

Constructing nmatrix objects 25
Properties . 26
The TargetType property 27
Passing nakhur subclasses to m-files 28
Writing to file . 31

Distributed and GPU processing 32
setGPUMode . 32
setGPUTarget . 33

3

isGPUTarget . 33
Appendix 1: MAT-file Utility Functions 34
Reading data files . 34

where function . 34
endian function . 35

Writing large data sets . 35
MATOpen . 35
AppendVector . 36
AppendColumns . 36
AppendMatrix . 36
AddDimension . 36
RestoreDiscClass . 37
CheckIsLastEntry and GetLastEntry 38
VarRename . 38

4

The problem

What can you do when:

1. a variable is too large for the MATLAB workspace?

2. many variables are needed simultaneously, but their summed size is
too large for the workspace?

3. only a subset of data are required from a large variable saved on disc

MATLAB provides few tools to help. The builtin save and load commands
deal minimally with whole variables. When data are embedded in a struc-
ture, the entire structure needs to loaded: you can not use load to access a
specific field of the structure.

In each of the examples above, using partial loading of data can substan-
tially improve performance - lowering demands on the MATLAB workspace
and, used in the right circumstances, can also dramatically increase the
speed of code execution. This library provides features for partial i/o and
for handling potentially huge data sets in MATLAB.

Benefits of partial i/o

To illustrate, take the example of a 3D matrix, perhaps a 128x128x8192
uint8 image stack, as shown in Figure 1. We will keep the matrix small
enough to fit in the MATLAB workspace to allow comparison with using
the MATLAB load command below.

Figure 2, illustrates how time is divided between

1. loading the image stack using the MATLAB load command.

2. extracting a series of consecutive frames from the loaded stack.

Loading the data set takes roughly 0.2s and accounts for most of the
time regardless of how many image frames are subsequently extracted from
the matrix. It is clear that attempts to improve performance will need to
shift the intercept of this line downwards, i.e. to avoid loading the entire
data set. Partial i/o does that.

5

.

⇒ .

Figure 1: A large 3D matrix length (left) is stored on disc. The methods in
this library allow submatrices to be loaded on-demand into the MATLAB
workspace (right) without loading the entire matrix. This saves memory
and increases speed as demonstrated below.

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

T
im

e
 (

s
)

Number of frames

Figure 2: Using the load command to access a MAT-file containing a
128x128x8192 image stack. The tests were run extracting 1,2,5…1000
frames and the plotted points are the averages of 10 test runs for each
condition.

6

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

T
im

e
 (

s
)

Number of frames

Figure 3: Comparing the speed of using the MATLAB load command and
partial i/o using fread from a MAT-file containing a 128x128x8192 image
stack. A variable number of consecutive images (n=1,2,5…1000) were ex-
tracted using load (◦—◦) or a modified ReadCubeSlice that loaded mutiple
frames in a loop (◦—◦) .

One of The MathWorks staffers, Oren Rosen, has posted a MATLAB File
Exchange contribution that illustrates the benefits of partial i/o1. Oren's
ReadCubeSlice function used the where function from the library described
here to get the required details about disc offsets, data types etc within
a MAT-file. With this information, Oren was able to perform partial i/o
and load only the required image from the stack using MATLAB's low-level
fread function. Figure 3 shows the speed improvement for the tests used
previously in Fig. 2. For low numbers of loaded frames this gives a perfor-
mance boost of ∼10 fold.

The ReadCubeSlice code was designed to load only a single frame at a
time: it was intended as a demonstration of principle only. For the tests
shown in Fig. 3, mutiple frames were loaded in a loop. That is not opti-
mal and performs poorly for large numbers of image frames. To get bet-
ter performance, we need to reduce the slope of the line in Fig. 3 so that
low-level i/o performs better even with relatively large numbers of frames
being loaded. The methods of the nmatrix class in this library do this: they
load multiple frames through a single call to fread. The red line in Figure 4

1http://www.mathworks.co.uk/matlabcentral/fileexchange/17992

7

http://www.mathworks.co.uk/matlabcentral/fileexchange/17992

shows the performance gain. Using a single call to fread reduces the slope
again so we now have a substantial speed improvement even when loading
1000 frames at a time.

The nmatrix class also generalizes the approach used in ReadCubeSlice:
while ReadCubeSlice allows a plane to be along the in x, y or z axes of a 3D
matrix, nmatrix supports extraction from any dimension of an N-D matrix.

0 100 200 300 400 500 600 700 800 900 1000
0

0.05

0.1

0.15

0.2

0.25

T
im

e
 (

s
)

Number of frames

Figure 4: Comparing the speed of using the MATLAB load command and
partial i/o using ReadCubeSlice or the nmatrix class from a MAT-file con-
taining a 128x128x8192 image stack. A variable number of consecutive
images (n=1,2,5…1000) were extracted using load (◦—◦), ReadCubeSlice
(◦—◦), or the nmatrix class described in this document using low-level i/o
(◦—◦) .

Partial i/o with random access

In the tests above, the data accessed were stored in a consecutive block of
the file. When data are not in a consecutive block the nmatrix class meth-
ods switch to using a loop but this hits performance. One solution is to
map the data from disc through the system's virtual memory. The nma-
trix class supports this: you have a choice of using low-level i/o or memory
mapping and you can switch dynamically. Figure 5 shows a variation of the
test shown in Fig. 4. Here, the frames were chosen at random then loaded
through a single call to the nmatrix subsref method. Note the change of

8

x-axis range in Fig. 5: it covers loading up to 8000 frames, i.e. nearly all
of those available in the file.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

T
im

e
 (

s
)

Number of frames

Figure 5: Repeat of the test shown in Figure 2 but with frames from the
image stack chosen randomly rather than in a contiguous block. The
MATLAB load command behaves much as before(◦—◦). The nmatrix class
with low-level i/o performs poorly except for very low n (◦—◦). Switching
to virtual memory provides a substantial performance boost (◦—◦).

For truly random access to the elements of the data set, the nmatrix
class methods in low-level i/o mode resort to reading a block of data, then
extracting the required elements from that. While this will often still re-
duce MATLAB workspace use, it will not generally be fast enough. In that
case memory mapping is better: the nmatrix class allows both low-level
access to the data on file and access via MATLAB memmapfile class.

Figure 6 shows that result of running a test using linear indexing into
the 128x128x8192 image stack above using randomly generated linear in-
dices. Tests returned 100 to 2x106 elements as indicated. The nmatrix
class performance is dependent on the number of elements returned but
invariably outperformed the load command by ∼1.5x to ∼8.5x for low n.

Thus far, the nmatrix class has been used as a simple wrapper for the
virtual memory support offered in MATLAB's memmapfile class. If pre-
ferred, the memmapfile can be used directly. A getMap function described
within provides a convenience method for obtaining memmapfile objects
for data in MAT-files. As shown in Fig. 7, there is little performance differ-
ence between the memmapfile and nmatrix class used in virtual memory

9

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

0

0.05

0.1

0.15

0.2

0.25

0.3

T
im

e
 (

s
)

Number of Elements

Figure 6: Linear indexing into the image stack using randomly generated
indices. The returned data block had 100…2x106 elements as indicated on
the abscissa. As before, the blue line shows the time taken using load.
The red line shows the data accessed using the nmatrix class and virtual
memory.

mode; however, the nmatrix class methods add additional features - the
ability to switch to low-level i/o among them.

Finally, Fig. 8 compares the performance of the nmatrix class when
using virtual memory or low-level i/o. Virtual memory always provided
better performance and is therefore likely to be preferred wherever suffi-
cient virtual memory is available.

10

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
6

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2
T

im
e

 (
s
)

Number of Elements

Figure 7: Comparison of nmatrix (◦—◦) and memmapfile (◦—◦) classes
for inear indexing into the image stack using randomly generated indices
via virtual memory.

0 1000 2000 3000 4000 5000 6000 7000 8000
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

T
im

e
 (

s
)

Number of frames

Figure 8: Comparison of nmatrix performance using virtual memory
(◦—◦) and fread (◦- - ◦) for frame based access to contiguous memory
blocks. For reference, the performance using the MATLAB load command
is also included (◦—◦).

11

Example applications

Dealing with a single huge variable

The image stack example above used a relatively small matrix so we could
compare performance with the MATLAB load command (an image stack
small enough for the MATLAB workspace was needed). If we add more
images to the stack it would make a better test of the partial i/o. For the ex-
ample in Fig. 9, the stack was extended to give a matrix of 128x128x196608
(i.e. 3.2Gb) and the tests of Fig. 4 were repeated using low-level i/o and
virtual memory via the nmatrix class. For these tests, the data were saved
to a standard binary file as the version 6 MAT-file used before has a 2Gb
limit. The data shown are mean ± S.D. for 10 trials in each condition.

Using virtual memory (◦—◦) outperformed low-level i/o (◦- - ◦), with
the difference becoming more significant as the number of loaded frames
increased. The increased scatter associated with low-level i/o is associated
with the initial fseek performed to locate the starting point in the file (re-
call that n consecutive frames are being read with the first being chosen at
random from those available).

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

T
im

e
 (

s
)

Number of frames

Figure 9: Comparing the time taken to load a consectutive block of images
from a 3.2Gb image stack using low-level i/o (◦- - ◦) and virtual memory
(◦—◦) via the nmatrix class.

The poorer performance of low-level i/o with very large data sets means
that virtual memory mapping will often be preferred. If there are insuf-

12

ficient system resources to memory map the entire data set the getPar-
tialMap function is available. getPartialMap allows partial i/o from an al-
ready selected part of a data set. It requires virtual memory to be allocated
only for the fraction of the data set that is represented. getPartialMap is
described fully below.

Dealing with many variables

Another case is where individual variables may or may not be too large
for the MATLAB workspace but simultaneous access is needed to many
of them - with the sum of their sizes being too great. Dealing with this
situation was the main reason behind developing the nmatrix class for the
sigTOOL Project.

The nmatrix class supports vitrual memory mapping and low-level ac-
cess to data files. It also includes methods that allow virtual memory to be
allocated and deallocated on-the-fly. For a data file with perhaps hundreds
of signal channels, this allows virtual memory to be managed according to
the available resources and, for the sigTOOL program, this is done in the
background without the user needing to manage the memory actively.

The nmatrix class also allows the data from disc to be loaded into an
nmatrix instance in RAM. As access to a primitive data type will always
outperform disc-based access this can be used to speed up processing when
system resources allow it. As the data are accessed via the nmatrix meth-
ods, the same code can be used regardless of whether the data are in RAM,
memory mapped or accessed by low-level i/o.

Additionally, the nmatrix deceives MATLAB: it pretends to be a primi-
tive data type so instances of nmatrix can often be passed to existing MAT-
LAB m-files that expect a primitive data type on input: including most stan-
dard MATLAB toolbox functions.

13

Figure 10: Multiple channels displayed in a sigTOOL data view. Data
are mapped to the MATLAB workspace through virtual memory which is
managed dynamically by the package. Data shown are from a sample
file from MultiChannel Systems GmbH

14

A note on file formats

MATLAB's MAT-files do not use a single format. The file formats are clas-
sified by

1. Level the MATLAB version in which the basic format was introduced

2. Version which gives the MATLAB version required to read the file

Currently, three Levels are supported: 4, 5 and 7. Level 4 is a legacy format
not described further here. The 'Version' level used in the MATLAB save
command is probably more familiar to most users. These map as follows

save option Level Version Comments Documented
-v6 5 6 ✓
-v7 5 7 same as -v6 but with unicode

+ gzip compression
✓

-v7.3 7 7.3 HDF5-based 7

Level 5 MAT-files (Version 6 and 7 files)

The Level 5 format is a proprietary hierarchical file format fully documented
by The MathWorks2. Tools are available to load these files in other lan-
guages e.g. Octave3 , Python4 and R5.

To save a MAT-file using these formats specify the '-v6' or '-v7' option
with the MATLAB save command. At the time of writing, MATLAB ships
with Version 7 set as the default format in MATLAB desktop preferences.
If you want to use this library often, you might prefer to set that to Version
6.

The use of gzip compression in Version 7 files is the problem for using
it with this library. Compression can substantially reduce file size and, in
theory at least, can speed up data access because the added overhead of de-
compressing the data may be small compared to the time saved in loading

2http://www.mathworks.co.uk/help/pdf_doc/matlab/matfile_format.pdf
3http://www.gnu.org/software/octave/doc/interpreter/Simple-File-I_

002fO.html
4http://docs.scipy.org/doc/scipy/reference/generated/scipy.io.loadmat.

html
5http://cran.r-project.org/web/packages/R.matlab/R.matlab.pdf

15

http://www.mathworks.co.uk/help/pdf_doc/matlab/matfile_format.pdf
http://www.gnu.org/software/octave/doc/interpreter/Simple-File-I_002fO.html
http://www.gnu.org/software/octave/doc/interpreter/Simple-File-I_002fO.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.io.loadmat.html
http://docs.scipy.org/doc/scipy/reference/generated/scipy.io.loadmat.html
http://cran.r-project.org/web/packages/R.matlab/R.matlab.pdf

data from disc. For the author's code, use of the Version 7 format invariably
slows down processing. Looking at MATLAB Answers6 and the Newgroup7

shows that others experience this too.

Level 7 MAT-files (Version 7.3 files)

Version 7.3 files were introduced in 2006. Version 7.3 files are "HDF5-
based": they employ the widely used and documented Hierarchical Data
Format 5 system. This means that tools from the HDF Group8 can be used
to inspect the files' structure and contents. Unfortunately, The MathWorks
support staff say that the Version 7.3 format "...is not pure HDF5 how-
ever and we never claimed that these files will be readable by any HDF5
libraries".

As of MATLAB R2011b, support for partial i/o from Version 7.3 files
has been added through the MATLAB MatFile class. On R2011b+, the
nmatrix class included in this library can wrap a MatFile instance in much
the same way as a memmapfile instance to provide support for Version 7.3
files. However, the matfile class does not presently support the full range
of MATLAB indexing options: linear indexing and logical indexing are not
supported and for N-D matrices, subscripts must be specified for all di-
mensions and ascend evenly. Perhaps these limitations will be removed in
later releases.

The Version 7.3 format appears not to be supported in Octave, R etc.
and has not been documented by MATLAB. If you are developing code for
distribution you might prefer to use an earlier MAT-file version or a pure
HDF5 format (see below).

HDF5 files

The design of the HDF5 format was initiated by the National Center for Su-
percomputing Applications in the USA9 and its development is now sup-
ported ny the HDF Group10. MATLAB provides two sets of tools for writing
HDF5 files:

6urlhttp://www.mathworks.co.uk/matlabcentral/answers/
7http://www.mathworks.co.uk/matlabcentral/newsreader/
8http://www.hdfgroup.org/
9http://www.ncsa.illinois.edu/

10http://www.hdfgroup.org/

16

http://www.mathworks.co.uk/matlabcentral/newsreader/
http://www.hdfgroup.org/
http://www.ncsa.illinois.edu/
http://www.hdfgroup.org/

1. a set of high-level functions h5read, h5write etc and

2. a set of low-level functions that provide access to the HDF5 API.

Examples of using the low-level functions in many languages, including
MATLAB, can be found at

http://www.hdfgroup.org/ftp/HDF5/examples/examples-by-api/

The functions in this library support access to HDF5 files subject to the
constraints that

1. The required data set is not chunked

2. The data are not compressed

3. The data space for the set has been fully allocated in the file

Better support for HDF5 files making use of the HDF5 low-level libraries
might be included in a future version.

Custom binary file formats

The nmatrix class can be used with any custom binary format if you are
able to provide a memmapfile object for the required data set in the file i.e.
you know the byte offset, primitive class and shape of the saved matrix11 .

MATLAB support for partial i/o

In MATLAB R2011b, support for partial i/o was added through a matfile
function which returns a matlab.io.MatFile object. These are really only
useful when dealing with MAT-files of Version 7.3 format.

Since 2005 (MATLAB 7), memmapfile objects have been supported
in MATLAB. These allow partial i/o to the MATLAB workspace via virtual
memory. MATLAB provides no tools to construct memmapfile objects for
data stored in its own MAT-files. This library does, thus allowing easy use
of virtual memory support with Version 6 MAT-files.

The syntax to access data in matlab.io.MatFile or memmapfile objects
differ between each other and are different to that needed to access data

11For shape, remember that MATLAB uses Fortran-style, column-major ordering.

17

http://www.hdfgroup.org/ftp/HDF5/examples/examples-by-api/

stored in an ordinary MATLAB matrix. To make full use of these features,
you are likely to need to re-write your code. To avoid this, the nmatrix
class has been developed here. An instance of this class can contain a mat-
lab.io.MatFile or a memmapfile instance and, as described above, can also
support low-level i/o. The syntax to access data in an nmatrix instance is
the same as that to access a MATLAB matrix: there should, therefore, be no
need to customise code to use them. Providing a consistent API in this way
allows matlab.io.MatFile, memmapfile and standard matrices to be used
as required without modifying code. To achieve this, the nmatrix class ef-
fectively deceives MATLAB into believing that it is a primitive data type.
Note that this deception is suported only in m-code: nmatrix instances
can not be passed as inputs to mex-files or Java code.

What this library adds

This library was designed to work with Version 6 MAT-files. Workarounds
are included to allow Version 7 and 7.3 files to be used also but, in general,
it will be better to transfer data to the Version 6 format. The library has
three parts:

1. The original MAT-file Utilities

These have been on the MATLAB FEX for some years and provide
extended support for reading and writing to Version 6 MAT-files. The
where function is part of these utilities and provides the information
needed to memory map a data set. In addition, functions are provided
to append data to the final variable in a Version 6 MAT-file permitting
data files to be written in stages. These functions are fully described
in

2. Convenience functions

These functions provide support for memory mapping Version 6 MAT-
files without calling the where function explicitly. Version 7 and 7.3
files are supported via a workaround that extracts the required data
set to a temporary Version 6 file, then maps the data from that. Func-
tions for translating between MATLAB MAT-file formats are provided
also and, in general, using these to create a file in the Version 6 format
will be preferred to the workarouund above.

18

3. The nakhur classes

The nakhur superclass is implemented by subclassing in the nmatrix
and adcarray classes which extend and update the adcarray class
that has been on the MATLAB FEX for some years. The new classes
use R2008+ MATLAB class syntax and overload the MATLAB han-
dle class. The nakhur classes make use of some of the MAT-file Util-
ities but present them in a user-friendly way. Users do not need any
knowlege of the MAT-file format to use these classes.

The nakhur superclass provides easy-to-use constructors and a con-
sistent API regardless of whether data are accessed through low-level
i/o, memory mapping or via the matlab.io.MatFile. They also em-
ulate the API of primitive matrices in MATLAB which means they
should be able to slot into existing code without editing. To achieve
that, standard MATLAB methods are overloaded to return non-standard
results.

19

Convenience Functions

getMap function
v6✓v7✓
v7.3✓HDF5✓ getMap returns a memmapfile object for a variable in the specified file.

Construction is easy. For example, with data in a MAT-file or an HDF5
file, just construct a memmapfile instance with:

myMap=getMap (f i l ename , variablename) ;

where filename is a string giving the fully qualified file name and variable-
name is the name of the required variable in that file.

Data will always be represented through the Data.Adc field of the re-
sulting memmapfile object.

variablename should be a string describing a vector or matrix of a prim-
itive data type such as double, single, uint8, logical etc. (or an HDF5 equiv-
alent). The data should be real-valued, and non-sparse.

Structures and objects are supported: just give the path to the matrix
e.g.

myMap=getMap (f i l ename ,
’ / structname / f ie ldname1 / f i e ldname2 /... ’) ;

The file format will normally be assumed from the file extension. To
force the use of a specific format, specify it at construction e.g.:

myMap=getMap (’ m y f i l e . d a t ’ , ’ /x ’ , ’mat ’) ;

Notes:

1. ✓Version 6 MAT-files are fully supported

2. ✓Version 7 and 7.3 MAT files are supported by copying but you must
explicitly set the usecopy_always flag e.g

myMap=getMap (’ myf i l e .mat ’ , ’ /x ’ , [] , ...
’ usecopy_always ’) ;

A temporary Version 6 MAT-file containing the required data set will
be created and mapped12 . The user is responsible for deleting this as
required.

12in the folder returned by the MATLAB tempdir function

20

3. ✓HDF5-files are supported if the accessed data set is not chunked or
compressed. If data can not be mapped, an exception will be thrown
explaining why.

getPartialMap function
v6✓v77

v7.37 HDF5✓
Binary✓

getPartialMap creates a memmapfile intance representing only part of a
data set

Examples:

pmap=getPart ia lMap (f i l ename , dataset , s t a r t , stop) ;
pmap=getPart ia lMap (memmapfileobject , s t a r t , stop) ;

1. For a vector: start and stop are the first and last elements

2. For a matrix start and stop are the linear indices into the last dimen-
sion. Thus, for a 2D matrix start and stop would be the first and last
column to map. For a 4D matrix of dimension [m, n, p, q], q(start) to
q(stop) would be mapped.

Data will always be represented through the Data.Adc field of the resulting
memmapfile object.

Indexing into the resulting partial map begins at 1 (not start) so for a
data set representing a 128x128x3x1000 matrix created with

pmap=getPart ia lMap (f i l ename , dataset , 500 , 25) ;

pmap.Data.Adc(:,:,:,1) would return the data for dataset (:,:,:,500) .
If required, partial maps can be wrapped in a nakhur subclass such as

nmatrix, e.g.:

x=nmatrix (pmap) ;

Low-level i/o will then be supported
Partial maps can also be created using an existing memmapfile object.

x=getPart ialMap (memmapfileobject , s t a r t , stop) ;

Note that the memmapfile constructor does not allocate virtual memory
until an instance is accessed. As long as this is the case, only space for the
partial map will be allocated here (and only when the partial map is ac-
cessed).

21

Notes:

1. ✓Version 6 MAT-files are fully supported

2. ✓Binary files are fully supported if you supply a memmapfile instance
as input

3. ✓Version 7 and 7.3 MAT files are not directly supported but you can
use a memmapfile object from getMap

x=getPartialMap (getMap (f i l ename , datase t) , ...
s t a r t , stop) ;

4. ✓HDF5-files are supported if the accessed data set is not chunked or
compressed. If data can not be mapped, an exception will be thrown
explaining why.

copyTo functions

A set of copyTo functions copy existing MAT-files to files of a specified for-
mat. Using copyToV6 is likely to be useful of you want to make much use
of this library with existing data files.

Three functions are provided. All call a private copyToVersion function
that does the work. Variables are read from the source file and written to
the output file individually. These functions are copyToV6, copyToV7 and
copyToV73 which copy data to Version 6, 7 and 7.3 formats respectively.
The output files are written to a subfolder named 'V6', 'V7' or 'V73' as ap-
propriate in parent folder of the source file.

Calling formats are the same for all function. For copyToV6:

1. copyToV6(filename) Copies the specified file

2. copyToV6(foldername) Copies all files in the specified folder

3. copyToV6(cellarray) Copies all files for each file/folder entry in the
cell array

22

The nakhur superclass

The nakhur class is a superclass that has no constructors. You do not in-
stantiate a nakhur instance directly. Instead you call the constructor for
one of its subclasses. There are presently two of these:

1. nmatrix which is a general-purpose class for representing MATLAB
matrices stored on disc.

2. adcarray which is an extension to nmatrix for representing data stored
as integer values on disc and typically derived from an analogue-to-
digital convertor, camera etc. The adcarray was developed for a spe-
cific purpose and is included here primarily for backwards compata-
bility with the adcarray class that has been on the MATLAB FEX
for some years. The adcarray class was developed for the sigTOOL
Project. It is likely that users developing code from scratch will prefer
to use the nmatrix.

The nmatrix class is versatile and will meet most users needs. Addi-
tional subclasses can be added by extending the nakhur superclass or the
nmatrix subclass.

What the nakhur superclass adds

1. Consistent API

Access to nakhur objects uses a consistent syntax regardless of whether
the underlying mechanism uses low-level i/o, memmapfile or mat-
lab.io.MatFile objects.

2. Delaying memory allocation

Virtual memory is allocated to a memmapfile object only when the
data property is accessed but this includes calls, for example, to size
or numel on the data property. The nakhur wrapper prevents this
by doing the work for those calls itself. With a nakhur object, virtual
memory will be allocated only when the data contents are read.

23

3. Releasing memory

The nakhur class provides support to reset an instance, releasing all
virtual memory allocated to it. A new memmapfile object will be cre-
ated and virtual memory will be allocated, as above, only when the
data are read . The collapse and expand methods work similarly.
The collapse function simply shrinks a memmapfile to a single ele-
ment while expand restores it to its full dimensons. Note that the
instantiateMap method causes a memmapfile to be instantiated but
does not allocate virtual memory.

4. Using low-level i/o

Using memory mapping is typically much faster than using random
access file i/o but requires the allocation of virtual memory. The
nakhur superclass supports low level i/o when required.

The properties and features of the nakhur superclass are discussed be-
low in relation to the nmatrix class. The nmatrix subclass simply adds a
constructor and a couple of additional methods. All properties and most
methods are inherited from the nakhur superclass. All properties are pub-
lically accessible but setting of properties is private or protected except for
the TargetType and Map properties (see below).

Note that the nakhur class code maintains some lookup data relating
to files accessed in any MATLAB session. For low-level i/o, all nakhur in-
stances accessing the same file will share the same file handle. Similarly,
nakhur instances will share a matlab.io.MatFile instance for any file. The
where function is called only once for any file in each MATLAB session -
unless the system file modification time stamp alters, in which case the file
will be re-analyzed.

24

The nmatrix class

Constructing nmatrix objects

Construct an nmatrix instance from a MAT-file or HDF5-file using:

x1=nmatrix (f i l ename , varname)

If the file has a non-standard extension, specify the format in the construc-
tor e.g.

x1=nmatrix (f i l ename , varname , ’mat ’) ;

By default, memmapfile objects are used for accessing Version 6 files, as
well as Version 7 files after copying. Version 7.3 files are supported via the
matfile.io.MatFile class. To force copying instead on a Version 7.3 file, and
hence not be limited by the constraints of matfile.io.MatFile class use:

x1=nmatrix (f i l ename , varname , ’mat ’ , ...
’ usecopy_always ’) ;

If you have another format e.g. a custom binary file, you can supply a
memmapfile object directly:

x1=nmatrix (m ap f i l e o b j e c t) ; % TargetType w i l l ...
d e f a u l t to the type on d i s c . No byte swapping

x1=nmatrix (map f i l eob j e c t , TargetType) ;% TargetType ...
as r e q u e s t e d . No byte swapping

x1=nmatrix (map f i l eob j e c t , , TargetType , ...
SwapFlag) ;% TargetType and swapping (t rue / f a l s e) ...
as reques ted

This form can also be used to create an nmatrix instance from a partial map
created using the getPartialMap function. Finally, an nmatrix can have its
data assigned directly in RAM.

x1=nmatrix (M) ;

where M is a standard MATLAB vector or matrix. In this case, the matrix
M is placed in the obj.Map.Data.Adc field. This is a convenience, allowing
nakhur objects to be used rather than writing conditional code to support
both matrices and nakhur subclasses. When data are stored in RAM in this
way they may be real, complex and/or sparse.

25

Properties

The viewable properties of the nmatrix class are shown below:

nmatrix handle
Properties:
Filename: '/Users/ML/Documents/matlab.mat'
FileFormat: 'MAT-File -v6'
DataSet: '/x'
Mode: 'memmapfile'
TargetType: @uint8
Map: [1x1 struct]
GPUMode: 'off'
GPUTarget: 0
Methods, Events, Superclasses

Filename, FileFormat and DataSet are self-explanatory strings. Note
that they may be empty, e.g. when the nmatrix is constructed from a
memmapfile object the name of the data set will be unknown.

Mode identifies the data access type: memmapfile, matfile.io.MatFile,
fread or ram.

TargetType is described further below. It describes a transform to ap-
ply to data accessed from disc. This will often be a simple type cast (hence
the name) but TargetType may contain a handle to a function performing
more complex transforms. TargetType is public and user-settable.

Map contains a structure in the example above. This contains the same
fields as a memmapfile object. In memmapfile mode, this structure will be
replaced by a memmapfile instance when required. While Map is a public
and user-settable property to allow writing to disc as well as reading, users
generally should not replace the contents of this property, only assign val-
ues to its sub-properties e.g. obj.Map.Data.Adc(10)=uint8(123);

The GPUMode and GPUTarget properties support switching between
returning data to system and to GPU memory. These are described further
below.

26

Many additional properties are hidden and do not display when an nma-
trix is displayed. However, the nmatrix class has an inspect method that
displays all these properties if required at the MATLAB command window.
For details of the properties see the nakhur superclass code. Some of these
hidden properties are mentioned below: they are hidden only for clarity as
most users will not want to access them.

The TargetType property

Typically, the TargetType property will be used simply to cast the repre-
sented data to the required type. A TargetType property is needed because
the data type on disc may be different to the required type. MATLAB's save
command would automatically cast a matrix of doubles that were all val-
ued 0-255 to the uint8 class on disc13 . The load command would then cast
back. This can significantly increase speed with disc bound code.

TargetType may be a string ('double', 'single' etc) or a function han-
dle (@double, @single). With low-level i/o, the string form will be more
efficient as the casting will be done by the MATLAB builtin fread function.

As casting is done only on the subset of data returned by calls to obj(…),
an nmatrix instance can usefully be used to store a data type requiring few
bytes when those data will need to be cast on access to a larger type.

As TargetType can be a function handle, it can be used to perform more
complex transformations on data access. Examples:

% Simple
y.TargetType=’ s i n g l e ’ ;
y.TargetType=@double ;
y.TargetType=@(x) double (x) /255 ;
% More complex
y.TargetType=@detrend ;
y.TargetType=@(x) f i l t e r (a , b , double (x)) ;
% Copy acce s s ed data from v i r t u a l memory to a GPU
y.TargetType=@gpuArray
% Copy acce s s ed data from v i r t u a l memory to a d i s t r i b u t e d pool
y.TargetType=@(x) d i s t r i b u t e d (x) ;

13The data type on disc is available from the hidden Format property of the nmatrix:
obj.Format{1}. The metadata in a MAT-file provide the required type so, with these files,
TargetType will be set automatically by the constructor

27

As nmatrix instances can be passed as inputs to functions, the TargetType
property effectively provides benevolent code injection to those functions.

Passing nakhur subclasses to m-files

While memmapfile objects and matfile.io.MatFiles instances can be passed
as inputs to MATLAB functions, those functions will need to be specially
written to access the data using the APIs for those objects. For a memmap-
file object for example, code will need to access the Data property of the
object. This means those objects can not simply be passed as input to most
existing functions, including those in MATLAB's own toolboxes.

Objects of the nakhur subclass can be passed to functions and will be-
have as though they were matrices of the data types that they return. This
is achieved by overloading standard MATLAB methods to behave in a non-
standard way in the nakhur class definition:

nakhur subclasses are always scalar so numel will always return 1. As
this makes MATLAB's '()' syntax for accessing arrays of nakhur objects
redundant, the behaviour of subsref can be altered: for a nakhur object,
obj(…) accesses the data contained in the object. For an nmatrix instance
with TargetType set to @double representing data through a memmap-
file instance (with the data in the Map.Data.Adc property), data=obj(…) is
interpreted as

data=double (obj.Map.Data.Adc (…)) ;

If TargetType were set to @(x)double(x)/255, data=obj(…) would equate
to

data=double (obj.Map.Data.Adc (…)) /255 ;

so might be used to cast uint8 image data on disc to MATLAB double pre-
cision, 0-1 scaled image data.

28

Other methods then need to be overloaded to provide results that are
consistent with this behaviour. For a nakhur subclass:

1. size

Size returns results for the data, not the object. An nmatrix instance
representing a 128 x 128 x 8192 uint8 image stack will return [128
128 8192] for size.

2. is* and isa* methods

Is* and isa* methods give results for the returned data, not data
on disc or the object. Thus with the uint8 matrix above and Tar-
getType set to @double, isfloat will return true while isinteger will
return false.

There is one caveat here. Recall that TargetType can be a function
handle to any user-written code. The is* and isa* methods will gen-
erally test the output of this with a test input of zero cast to the type
defined in obj.Format{1} (the format of the data on disc, see above).
As MATLAB variable typing is dynamic, this test could fail if the out-
put of the function in TargetType was dependent on the value of the
input (e.g. it returned double for and inputs of 0-10, and a uint64
otherwise). In these (unlikely?) circumstances you will need to cre-
ate a custom subclass and overload the is* and isa* methods to suit
your needs.

A couple of new methods are added: isnakhur returns true for any
nakhur subclass. isnmatrix returns true for an nmatrix or anything
that extends the class such as an adcarray. In addition isa(obj, string)
returns true if string is 'nakhur' and as appropriate for the name of
a nakhur subclass. To achieve this subclasses should set the Type
property of the object. For the adcarray class for example, Type is
set to 'nakhur:nmatrix:adcarray' indicating that the adcarray class
extends nmatrix which extends nakhur.

3. subsref

As noted above, standard MATLAB obj(…) addressing is redirected to
the data property. All MATLAB indexing options are available when
using memmapfile or low-level access to the data: subreferencing,

29

linear and logical indexing etc.. Missing dimensions and trailing sin-
gleton dimensions are all supported. Thus nakhur subclasses behave
exactly as they would if the data were represented in a primitive ma-
trix.

The matlab.io.MatFile class is more limiting. Linear and logical in-
dexing are not supported and all dimensions must be specified. In
addition, indices must ascend evenly. Workarounds are included in
the nakhur class definition, but these are often sledge-hammer style
e.g. loading the whole data set, then indexing into that. Improved
support for matlab.io.MatFile objects will require improvements to
the matlab.io.MatFile class but that is a job for the MathWorks, not
this library.

Two special cases merit mention.

(a) x() For a matrix x=x() is equivalent to x=x. With a nakhur in-
stance, x=x() returns all of the data transformed as per the Tar-
getType setting. For y=x(), y will have the dimensions of size(x).

(b) x(:).

Following the logic above, for a nakhur object x, x=x(:); should,
and does, return the data as a column vector.

There is one circumstance where this might not be helpful. It
is not uncommon for MATLAB toolbox functions to force a col-
umn orientation on a vector by calling x=x(:);. if x is a nakhur
instance, this will destroy it and replace x with a column vector
that is potentially many Gb in size. For consistency, this is
the default behaviour.

The default setting can be altered by calling:

x.setTranposeOnRowAccessEnabled (t rue) ;

This only affects nakhur instances that contain vectors. The set-
ting has no affect on those containing matrices or N-D arrays.
When the TranposeOnRowAccessEnabled flag is set, x=x(:); will
set another internal flag, called TranposeOnRowAccess, in x that
causes it to return a column vector when it is accessed through
linear indexing regardless of the orientation of the vector it rep-
resents.

30

Note that

i. The data dimensions are not altered: size(x) is unchanged.

ii. x=x(:); returns the nakhur instance

The TranposeOnRowAccess can be set/cleared using setTran-
poseOnRowAccess(flag) where flag is true or false. The Tran-
poseOnRowAccess is always cleared when setTranposeOnRowAc-
cessEnabled(false) is called or the object is reset (but not when
it is collapsed).14

Writing to file

Note that while the nakhur class provides read-only support, it is possible
to write to the underlying file using the memmapfile or matlab.io.MatFile
objects or the low-level file handle using custom-code. It is left to the user
to manage potential share-access violations and to ensure that any data
written to disc are in the correct format (including byte swapping if needed).
If TargetType is used to transform data, the user will need to perform an
inverse transform before writing to disc.

The getIOObject method returns the underlying i/o object given the
current mode: i.e. a memmapfile object, matlab.io.MatFile object or file
handle for low- level i/o. The retured instances will be shared by reference
with the nakhur instance, and perhaps others as matlab.io.MatFile objects
and file handles are shared between all nakhur instances (and subclasses)
that reference the same file . For memmapfile objects, the instance will be
unique to any nakhur instance.

The isWritable method returns true or false depending on whether the
underlying wrapped object is write-enabled. For memmapfile and mat-
lab.io.MatFile access, change the writable property by calling the
setWritable(flag) method. Note the changing the write flag in

14This may seem odd. In the previous version of adcarray, calling x(:) would flip the di-
mensions for a row vector. This would have local scope only, but as the new version over-
loads handle, flipping dimensions would leak to all references of the object which is unde-
sirable. The TranposeOnRowAccess flag is also changed by reference, but at least default
behaviour can readily be restored by calling setTranposeOnRowAccessEnabled(false).
Watch out for threading issues though if you alter these settings off the main MATLAB
thread e.g. in callbacks.

31

matlab.io.MatFile mode affects all nakhur instances that share that mat-
lab.io.MatFile instance.

For low-level i/o, the internally generated read-only file handle will need
to be replaced explicitly with one that is write-enabled. For example, as-
suming a valid handle is already assigned:

o b j . s e t F i l e H a n d l e (fopen (fopen (ob j . g e tF i l eHand l e) , ’ a+’)) ;

The user should fclose the file handle when no longer required. The nakhur
methods will automatically reassign a default file handle to the instance
when its data are next accessed.

Data in RAM they are always write enabled. Calling getIOObject with
mode set to 'ram' issues a warning and returns.

For convenience a getByteLimits method provides the limits of the data
in file for memmapfile and fread modes. Users should ensure thay do not
write beyond these limits. Limits are zero-based including for data in RAM.
Limits will be returned as [NaN NaN] is matfile.io.MatFile mode.

Distributed and GPU processing

As noted earlier, the TargetType property can be used to distribute the re-
turned data or place it onto a GPU by placing the relevant code in a function
pointed to by a handle in TargetType. This is supported for the MATLAB
Parallel Computing Toolbox, the Jacket package from AccerlerEyes15 and
for the freeware GPUmat package from GP-you.org16.

With the MATLAB Parallel Computing Toolbox for example, Target-
Type to @gpuArray will place the returned data onto the GPU. With GPUmat,
set TargetType to e.g. @GPUdouble or with Jacket to@gdouble.

Additional support to switch dynamically between using a GPU or sys-
tem memory is provided for Jacket and GPUmat only. The support works
only when the returned data type is a primitive class: double or single with
GPUmat, any primitive type with Jacket.

setGPUMode

Call setGPUMode(package) where package can be 'off', 'jacket' or 'gpumat'
to enable GPU support.

15http://www.accelereyes.com/
16http://gp-you.org/

32

http://www.accelereyes.com/
http://gp-you.org/

setGPUTarget

setGPUTarget(true) and setGPUTarget(false) can then be used to toggle
between passing data to the GPU or returning data to system memory.
Note that

1. If GPU mode is off, setGPUTarget(true) has no affect and may safely
be called in user-code.

2. If GPU mode is jacket or gpumat, setGPUTarget(true/false) will au-
tomatically toggle the TargetType setting to direct data to the GPU
or system memory.

isGPUTarget

isGPUTarget returns true if GPU use is turned on, i.e. through a previous
call to setGPUTarget(true), and false otherwise.

This is likely to be most useful when data are being represented in vir-
tual memory. A frequent limitation of GPU use is the time taken to load
data and transfer them on the bus to the GPU. Using DMA to direct data
from disc to the GPU will often be an optimal solution but if data are al-
ready in virtual memory because the user-application uses an nmatrix in
memmapfile mode, transferring those data directly is likely to be faster
still. Tests with a GeForce GTX 465, 1215 MHz, 962 MB VRAM on 64-bit
Windows showed a 2.5x speed improvement using nmatrix and memmap-
file to transfer an entire 819200000 byte double precision vector to the
GPU even when instantiation of the memmapfile was included in the tim-
ing. Greater improvements would be available if only part of the data set
was needed and/or the data set was already in memory courtesy of the sys-
tem memory management.

33

Appendix 1: MAT-file Utility Functions

This Appendix describes the original MAT-file Utilities. These can be
used to manipulate large data sets in a Version 6 MAT-file. They work only
with Version 6 MAT-files.

The MAT-file utilities for writing data to a MAT-file and modifying vari-
ables mostly require that you are working with the final variable in the
MAT-file i.e. the last variable saved using MATLAB’s save function.

Reading data files

where function

where acts similarly to whos but in addition provides information about
the class of the data on disc and the byte offsets into the file. This can be
used to read the file using low level I/O or memmapfile For all variables in
a file

s=where (f i l ename) ;

For a specified variable

s=where (f i l ename , varname) ;

For a particular field of a structure

s=where (f i l ename , varname , f i e ldname) ;

or

s=where (f i l ename , varbame , f ie ldname1 , ...
f i e ldname2 . . .) ;

if you have structures within structures
Replace fieldname with propertyname for objects
[s ,swap]=where(...) sets swap to 0, if the MAT-file endian format is the

default for the platform you are using , or to 1 if byte swapping will be
needed.

34

endian function

endian (f i l ename) ;

returns ‘ieee-le’ for a little-endian MAT-file and ‘ieee-be’ for big-endian

Writing large data sets

The output of where can be used to help with reading subsets of data from
a variable. The following routines are to assist with writing data:

MATOpen

MATOpen creates a new MAT-file, or if it exists, opens an existing MAT-file
in the appropriate endian mode and returns a MATLAB file handle

fh=MATOpen(’ my f i l e ’ , pe rmis s ion) ;

For valid strings for permission see MATLAB’s fopen.
All the routines below require that the target variable is the last variable

in the MAT-file. This can be checked with

CheckIsLastEntry (f i l ename , varname) ;

which returns true or false. If unknown, the name of the last variable
in a file can be determined with

GetLastEntry (f i l ename) ;

which returns a string.
In addition, all the routines require that data is stored on disc as the

same class as the target variable. MATLAB’s save command casts data to
the smallest compatible data type e.g. a double array with values all be-
tween 0 and 255 will be cast to uint8. Run

RestoreDiscClas s (f i l ename , varname) ;

before calling the AppendXXXX functions to restore the class of the data
on disc to that of the target variable in memory.

The AppendXXXX functions can only be used with real valued variables
(not complex data)

35

AppendVector

Appends data to the end of a row or column vector

AppendVector (f i l ename , varname , vec to r) ;

AppendColumns

Appends columns to an existing row vector or 2D matrix.

AppendColumns (f i l ename , varname , matrix) ;

Varname and matrix may be vectors or 2D matrices.

AppendMatrix

Similar to AppendColumns but adds data to the final dimension of an N-
dimensional matrix where N is >=2. Suppose we have a 100x100x3 RGB
image stored in variable img in myfile.mat. We can add a second 100x100x3
image from variable newimg using

AppendMatrix (’ my f i l e ’ , ’ img ’ , newimg) ;

load myf i l e img

will then return a 100x100x6 matrix with the two images. Had newimg
been 100x100x6, varname would have become 100x100x9. To organize
the data into a higher dimesional matrix, use AppendMatrix in combina-
tion with AddDimension (see below)

AddDimension

Can be used with AppendMatrix to save data to a higher dimension. Using
the example above we could use

AddDimension (f i l ename ’ , ’img) ; % Convert img to a 4D ...
matrix ...
%(100x100x3x1)

AppendMatrix (f i l ename , ’’img , newimg) ;% Add the 3D ...
newimg to the %4th ...
dimension

Now

36

load myf i l e img

will return a 100x100x3x2 matrix, the 4th dimension is the image num-
ber

In general, for

AppendMatrix (f i l ename , varname , matrix) ;

1. If varname and matrix have the same number of dimensions, matrix
will be added to the highest dimension of varname (e.g. if varname
points to a 100x100x9 matrix and we add a 100x100x6 matrix, we
will end up with a 100x100x15 result. The element ordering on disc
will be the same as if we had saved a 100x100x15 matrix in the first
place. MATLAB’s load command can be used to access the matrix.

2. If varname has 1 dimension more than matrix, matrix will be treated
as a submatrix or (set of submatrices) and added to varname whose
final dimension will be incremented by:

size of ultimate dimension of matrix

size of penultimate dimension

of varname which must be integer (e.g. suppose varname points to a
100x100x3x22 matrix and we add a 100x100x9 matrix, we will produce
a 100x100x3x25 result – matrix is assumed to contain three 100x100x3
matrices e.g. three RGB image frames).

Note that AddDimension adds the dimension to the data on disc. Most
MATLAB functions including load, whos etc strip away any trailing single-
ton dimensions so the effects of AddDimension will not show until the final
dimension is >=2.

RestoreDiscClass

MATLAB’s save command casts data to the smallest compatible data type
e.g. a double array with values all between 0 and 255 will be cast to uint8.
Run RestoreDiscClass(filename, varname); before calling the AppendXXXX func-
tions to restore the class of the data on disc to that of the target variable in
memory.

37

CheckIsLastEntry and GetLastEntry

The AppendXXX functions require that the target variable is the last vari-
able in the MAT-file. This can be checked with CheckIsLastEntry(filename, ...
varname); which returns true or false. If unknown, the name of the last vari-
able in a file can be determined with GetLastEntry(filename); which returns
a string.

VarRename

VarRename can be used to rename a variable in a file. The original variable
name can then be re-used. This is faster than using save –append to replace
a variable. VarRename is called in two ways:

bytes=VarRename(f i l ename , varname) ;

returns the maximum length of the variable name in bytes (the number
of bytes reserved on disc for the variable name)

r e s=VarRename(f i l ename , varname , newname) ;

Replaces the variable name on disc with newname. This returns 0 if the
rename has taken place, -1 otherwise. The length of newname must be less
than or equal to VarRename(filename, varname);.

38

	The problem
	 Benefits of partial i/o
	 Partial i/o with random access
	Example applications
	 Dealing with a single huge variable
	 Dealing with many variables
	A note on file formats
	 Level 5 MAT-files (Version 6 and 7 files)
	 Level 7 MAT-files (Version 7.3 files)
	 HDF5 files
	 Custom binary file formats
	MATLAB support for partial i/o
	What this library adds
	Convenience Functions
	 getMap function
	 getPartialMap function
	 copyTo functions
	The nakhur superclass
	What the nakhur superclass adds
	The nmatrix class
	 Constructing nmatrix objects
	 Properties
	 The TargetType property
	 Passing nakhur subclasses to m-files
	 Writing to file
	Distributed and GPU processing
	 setGPUMode
	 setGPUTarget
	 isGPUTarget
	Appendix 1: MAT-file Utility Functions
	Reading data files
	 where function
	 endian function
	Writing large data sets
	 MATOpen
	 AppendVector
	 AppendColumns
	 AppendMatrix
	 AddDimension
	 RestoreDiscClass
	 CheckIsLastEntry and GetLastEntry
	 VarRename

