MATLAB Examples

Construct, visualize and analyze the antenna elements in the Antenna Toolbox.

Model an infinite ground plane and calculate fundamental antenna parameters for balanced antennas.

Construct, visualize, and analyze an antenna array from the Antenna Toolbox.

Control each individual element in a linear or rectangular array. You can use this technique to change the size and tilt of the antenna, or to model dead elements etc. with individual elements

Uses infinite array analysis to model large finite arrays. The infinite array analysis on the unit cell reveals the scan impedance behavior at a particular frequency. This information is

Create and analyze resonant coupling type wireless power transfer(WPT) system with emphasis on concepts such as resonant mode, coupling effect, and magnetic field pattern. The analysis

A switched beam array of 4 resonant dipoles. The beam switching is accomplished by using a 4 X 4 Butler matrix. The effect of the beam switching is shown by observing the outputs of 4 reciving

The spiral antenna is an inherently broadband, and bidirectional radiator. This example will analyze the behavior of an equiangular spiral antenna backed by a reflector [1]. The spiral and

This example, optimizes a 6 element Yagi-Uda antenna for higher directivity at zenith (elevation = 90 deg). The design frequency and typical dimensions of the metal structures are chosen

Demonstrates the embedded element pattern approach to model large finite arrays. Such an approach is only good for very large arrays so that the edge effects may be ignored. It is common to

Models the inverted Amos sector antenna designed in [1]. A sector antenna is a type of directional antenna with a sector-shaped radiation pattern. The word 'sector' is used here in the

Analyzes a 2-antenna diversity scheme to understand the effect that position, orientation and frequency have on received signals. The analysis is performed under the assumptions that

Discusses the PIFA designed for Wi-Fi™ applications [1]. The Planar Inverted-F Antenna(PIFA) is basically a grounded patch antenna with the patch length of /4 (open-short microstrip

In it's most basic form, a microstrip patch antenna consists of a radiating patch on one side of a dielectric substrate and a ground plane on the other side. Microstrip patch antennas radiate

Studies a helical antenna designed in [2] with regard to the achieved directivity. Helical antennas were introduced in 1947 [1]. Since then, they have been widely used in certain

Calculate an antenna's field strength on flat earth and display it on the web map. The example also shows how to export the contour lines to KML, which can then be visualized on Earth browsers

Describes the modeling of a 77 GHz 2 X 4 antenna array for Frequency-Modulated Continuous-Wave (FMCW))applications. The presence of antennas and antenna arrays in and around vehicles has

Analyzes the effect of mutual coupling on Multiple Input Multiple Output (MIMO) communications. The transmitter and receiver have two dipole antenna elements each. The channel is

Design a double tuning L-section matching network between a resistive source and capacitive load in the form of a small monopole. The L-section consists of two inductors. The network

Create a crossed-dipole or turnstile antenna and array using the Conformal array. The turnstile antenna invented in 1936 by Brown [1] is a valuable tool to create a circularly-polarized

The standard retangular microstrip patch is a narrowband antenna and provides 6-8 dBi Gain with linear polarization. This example based on the work done in [1],[2], models a broadband patch

Calculate and visualize idealized signal strength between a transmitter and multiple receivers. The visualizations include an area coverage map and colored communication links. The

Analyzes the impedance behavior of a center-fed dipole antenna at varying mesh resolution/size and at a single frequency of operation. The resistance and reactance of the dipole are

An audio plugin designed to shift the pitch of a sound in real time.

Communicate between a digital audio workstation (DAW) and MATLAB using the user datagram protocol (UDP). The information shared between the DAW and MATLAB can used to perform

Visualize the magnitude response of a tunable filter. The filters in this example are implemented as audio plugins. This example uses the visualize and audioTestBench functionality of the

An audio plugin designed to enhance the perceived sound level in the lower part of the audible spectrum.

Apply reverberation to audio by using the Freeverb reverberation algorithm. The reverberation can be tuned using a user interface (UI) in MATLAB or through a MIDI controller. This example

Use a phase vocoder to implement time dilation and pitch shifting of an audio signal.

Design and use three audio effects that are based on varying delay: echo, chorus and flanger. The example also shows how the algorithms, developed in MATLAB, can be easily ported to Simulink.

Compress the dynamic range of a signal by modifying the range of the magnitude at each frequency bin. This nonlinear spectral modification is followed by an overlap-add FFT algorithm for

Implement a Vorbis decoder, which is a freeware, open-source alternative to the MP3 standard. This audio decoding format supports the segmentation of encoded data into small packets for

Use the Levinson-Durbin and Time-Varying Lattice Filter blocks for low-bandwidth transmission of speech using linear predictive coding.

Simulate a plucked string using digital waveguide synthesis.

Simulate a digital audio multiband dynamic range compression system.

Remove a 250 Hz interfering tone from a streaming audio signal using a notch filter.

Implement a phase vocoder to time stretch and pitch scale an audio signal.

Use tools from Audio System Toolbox (TM) to measure loudness, loudness range, and true-peak value. It also shows how to normalize audio to meet the EBU R 128 standard compliance.

Use a multistage/multirate approach to sample rate conversion between different audio sampling rates.

Implement a real-time audio "phaser" effect which can be tuned by a user interface (UI). It also shows how to generate a VST plugin for the phaser that you can import into a Digital Audio

Demonstrates two forms of graphic equalizers constructed using building blocks from Audio System Toolbox. It also shows how to export them as VST plugins to be used in a Digital Audio

Apply adaptive filters to acoustic echo cancellation (AEC).

Use the Least Mean Square (LMS) algorithm to subtract noise from an input signal. The LMS adaptive filter uses the reference signal on the Input port and the desired signal on the Desired port

Apply adaptive filters to the attenuation of acoustic noise via active noise control.

Simulate the design of a cochlear implant that can be placed in the inner ear of a profoundly deaf person to restore partial hearing. Signal processing is used in cochlear implants to convert

Design octave-band and fractional octave-band filters. Octave-band and fractional-octave-band filters are commonly used in acoustics. For example, octave filters are used to perform

Multiple-Input-Multiple-Output (MIMO) systems, which use multiple antennas at the transmitter and receiver ends of a wireless communication system. MIMO systems are increasingly

Simulate a basic communication system in which the signal is first QPSK modulated and then subjected to Orthogonal Frequency Division Multiplexing. The signal is then passed through an

Use the Communications System Toolbox to visualize signal behavior through the use of eye diagrams and scatter plots. The example uses a QPSK signal which is passed through a square-root

Plot a Gray-coded 8-QAM constellation.

Plot a PSK constellation having 16 points.

Filter a 16-QAM signal using a pair of square root raised cosine matched filters. Plot the eye diagram and scatter plot of the signal. After passing the signal through an AWGN channel,

Use the Complementary Cumulative Distribution Function (CCDF) System object to measure the probability of a signal's instantaneous power being greater than a specified level over its

The example performs Huffman encoding and decoding using a source whose alphabet has three symbols. Notice that the huffmanenco and huffmandeco functions use the dictionary created by

Plot a QAM constellation having 32 points.

Provides visualization capabilities to see the effects of RF impairments and corrections in a satellite downlink. The link employs 16-QAM modulation in the presence of AWGN and uses a High

Use the convolutional encoder and Viterbi decoder System objects to simulate a punctured coding system. The complexity of a Viterbi decoder increases rapidly with the code rate.

A digital communications system using QPSK modulation. The example uses Communications System objects to simulate the QPSK transceiver. In particular, this example illustrates methods

A method for digital communication with OFDM synchronization based upon the IEEE 802.11a standard. System objects from the Communication System Toolbox are utilized to provide OFDM

Compare, using eye diagrams, Gaussian minimum shift keying (GMSK) and minimum shift keying (MSK) modulation schemes.

The BER performance of several types of equalizers in a static channel with a null in the passband. The example constructs and implements a linear equalizer object and a decision feedback

Use the COMM.EYEDIAGRAM System object to perform eye diagram measurements on simulated signals.

Simulate multiple-input multiple-output (MIMO) multipath fading channels based on the IEEE® 802.16 channel models for fixed wireless applications. The example uses a MIMO multipath

Simulate multipath fading channels based on the COST 207 and GSM/EDGE channel models, using the Rayleigh and Rician multipath fading channel objects and the Doppler objects from

The application of low density parity check (LDPC) codes in the second generation Digital Video Broadcasting standard (DVB-S.2), which is deployed by DIRECTV in the United States. The

Use constellation diagrams to view QPSK transmitted and received signals which are pulse shaped with a raised cosine filter.

Use cyclostationary feature detection to distinguish signals with different modulation schemes, including P25 signals [ 1]. It defines four cases of signals: noise only, C4FM, CQPSK, and

Spatial multiplexing schemes wherein the data stream is subdivided into independent sub-streams, one for each transmit antenna employed. As a consequence, these schemes provide a

The intersymbol interference (ISI) rejection capability of the raised cosine filter, and how to split the raised cosine filtering between transmitter and receiver, using raised cosine

This examples shows you how to filter an ECG signal that has high-freqquency noise, and remove the noise by low-pass filtering.

Design lowpass filters. The example highlights some of the most commonly used command-line tools in the DSP System Toolbox. Alternatively, you can use the Filter Builder app to implement

Use System objects to do streaming signal processing in MATLAB. The signals are read in and processed frame by frame (or block by block) in each processing loop. You can control the size of each

Implement a speech compression technique known as Linear Prediction Coding (LPC) using DSP System Toolbox™ functionality available at the MATLAB® command line.

Design lowpass FIR filters. Many of the concepts presented here can be extended to other responses such as highpass, bandpass, etc.

Visualize and measure signals in the time and frequency domain in MATLAB using a time scope and spectrum analyzer.

Use an RLS filter to extract useful information from a noisy signal. The information bearing signal is a sine wave that is corrupted by additive white gaussian noise.

Model a dual-tone multifrequency (DTMF) generator and receiver. The model includes a bandpass filter bank receiver, a spectrum analyzer block showing a spectrum and spectrogram plot of

Implement two common methods of envelope detection. One method uses squaring and lowpass filtering. The other uses the Hilbert transform. This example illustrates MATLAB® and Simulink®

Compare three different delta-modulation (DM) waveform quantization, or coding, techniques.

Use a Kalman filter to estimate an aircraft's position and velocity from noisy radar measurements.

Apply adaptive filters to signal separation using a structure called an adaptive line enhancer (ALE). In adaptive line enhancement, a measured signal x(n) contains two signals, an unknown

Use the UDP Send and UDP Receive System objects to transmit audio data over a network.

Lowpass filter a noisy signal in MATLAB and visualize the original and filtered signals using a spectrum analyzer. For a Simulink version of this example, see Filter Frames of a Noisy Sine

Adaptively estimate the time delay for a noisy input signal using the LMS adaptive FIR algorithm. The peak in the filter taps vector indicates the time-delay estimate.

Model an algorithm specification for a three band parametric equalizer which will be used for code generation.

Takes the perspective of a MATLAB developer willing to author an instantaneous frequency estimator based on a Discrete Energy Separation Algorithm. It also introduces creating System

Use a recursive least-squares (RLS) filter to identify an unknown system modeled with a lowpass FIR filter. Transfer function estimation is used to compare the frequency response of the

Design arbitrary group delay filters using the fdesign.arbgrpdelay filter designer. This designer uses a least-Pth constrained optimization algorithm to design allpass IIR filters

Sample rate conversion of an audio signal from 22.050 kHz to 8 kHz using a multirate FIR rate conversion approach.

SAR [1] is a technique for computing high-resolution radar returns that exceed the traditional resolution limits imposed by the physical size, or aperture, of an antenna. SAR exploits

Efficiently convert sample rates between arbitrary factors.

How multiple Channel State Information (CSI) processes provide the network with feedback for Coordinated Multipoint (CoMP) operation. In this example User Equipment (UE) data is

Demonstrates how to measure the Channel Quality Indicator (CQI) reporting performance using the LTE System Toolbox™ under conformance test conditions as defined in TS36.101 Section

How an over-the-air LTE waveform can be generated and analyzed using the LTE System Toolbox™, the Instrument Control Toolbox™ and an Agilent Technologies® RF signal generator and

Generate an Enhanced Physical Downlink Control Channel (EPDCCH) transmission using the LTE System Toolbox™.

Demonstrates how to measure the Rank Indicator (RI) reporting performance using the LTE System Toolbox™ under conformance test conditions as defined in TS36.101 Section 9.5.1.1 [ 1 ].

Use the LTE System Toolbox™ to create a frame worth of data, pass it through a fading channel and perform channel estimation and equalization. Two figures are created illustrating the

Generate a test model using LTE System Toolbox™.

How an over-the-air LTE waveform can be captured and analyzed using the LTE System Toolbox™, the Instrument Control Toolbox™ and an RF signal analyzer.

How the LTE System Toolbox™ can be used to fully synchronize, demodulate and decode a live eNodeB signal. Before the User Equipment (UE) can communicate with the network it must perform cell

In the LTE system, a UE must detect and monitor the presence of multiple cells and perform cell reselection to ensure that it is "camped" on the most suitable cell. A UE "camped" on a particular

How the LTE System Toolbox™ can be used to create Physical Downlink Shared Channel (PDSCH) Bit Error Rate (BER) curves under Additive White Gaussian Noise (AWGN) in a simple Graphical User

Generate an HSDPA FRC H-Set using LTE System Toolbox™.

Measures the EVM within a downlink Reference Measurement Channel (RMC) signal, according to the EVM measurement requirements specified in TS 36.104, Annex E [ 1 ].

Demonstrates how to measure the Physical Downlink Shared Channel (PDSCH) throughput of a transmit/receive chain using the LTE System Toolbox™.

Generate a time domain waveform containing a Physical Downlink Shared Channel (PDSCH), corresponding Physical Downlink Control Channel (PDCCH) transmission and the Physical Control

Demonstrates Hybrid Automatic Repeat reQuest (Hybrid-ARQ) Incremental Redundancy (IR) in the Downlink Shared Channel (DL-SCH) transmission using the LTE System Toolbox™.

Use the Time Difference Of Arrival (TDOA) positioning approach in conjunction with the Release 9 Positioning Reference Signal (PRS) to calculate the position of a User Equipment (UE)

Demonstrates the effect of inter-cell interference on PDSCH throughput. A serving cell and two interfering eNodeBs are considered. The conditions specified in TS36.101, Section

Build an LTE compliant OFDM Modulator and Detector for implementation with HDL Coder™, and use LTE System Toolbox™ to verify the HDL implementation model.

How the Adjacent Channel Leakage Power Ratio (ACLR) can be measured within a downlink Reference Measurement Channel (RMC) signal using the LTE System Toolbox™.

How the LTE System Toolbox™ can be used to model a TS36.104 "PRACH Detection Requirements" conformance test. The probability of correct detection of the Physical Random Access Channel

The example aids understanding of the control region used in an LTE downlink subframe and its channel structure by showing how a Downlink Control Information (DCI) message is generated and

How the LTE System Toolbox™ can be used to model a TS36.104 Physical Random Access Channel (PRACH) false alarm probability conformance test. In this case the probability of erroneous

This examples shows how to model a point-to-point MIMO-OFDM system with beamforming. The combination of multiple-input-multiple-output (MIMO) and orthogonal frequency division

Illustrates microphone array beamforming to extract desired speech signals in an interference-dominant, noisy environment. Such operations are useful to enhance speech signal quality

Form an antenna array with a custom antenna radiation pattern and then analyze the array's response pattern. Such a pattern can be either from measurement or from simulation.

Use Phased Array System Toolbox™ to solve some array synthesis problems.

Assess the performance of both coherent and noncoherent systems using receiver operating characteristic (ROC) curves. It assumes the detector operates in an additive complex white

Discusses the detection of a deterministic signal in complex, white, Gaussian noise. This situation is frequently encountered in radar, sonar and communication applications.

Use the phased.SumDifferenceMonopulseTracker System object™ to track a moving target. The phased.SumDifferenceMonopulseTracker tracker solves for the direction of a target from

The design of a moving target indication (MTI) radar to mitigate the clutter and identify moving targets. For a radar system, clutter refers to the received echoes from environmental

When you create antenna arrays such as a uniform linear array (ULA), you can use antennas that are built into Phased Array System Toolbox™. Alternatively, you can use Antenna Toolbox™

Gives a brief introduction to space-time adaptive processing (STAP) techniques and illustrates how to use Phased Array System Toolbox™ to apply STAP algorithms to the received pulses.

Design a monostatic pulse radar to estimate the target range. A monostatic radar has the transmitter colocated with the receiver. The transmitter generates a pulse which hits the target and

Illustrates how to use the ambiguity function to analyze waveforms. It compares the range and Doppler capability of several basic waveforms, e.g., the rectangular waveform and the linear

Illustrates how to apply digital beamforming to a narrowband signal received by an antenna array. Three beamforming algorithms are illustrated: the phase shift beamformer (PhaseShift),

Model an automotive adaptive cruise control system using the frequency modulated continuous wave (FMCW) technique. This example performs range and Doppler estimation of a moving

Illustrates several high-resolution direction of arrival (DOA) estimation techniques. It introduces variants of the MUSIC, root-MUSIC, ESPRIT and root-WSF algorithms and discusses

Introduces constant false alarm rate (CFAR) detection and shows how to use CFARDetector and CFARDetector2D in the Phased Array System Toolbox™ to perform cell averaging CFAR detection.

Illustrates using beamscan, MVDR, and MUSIC for direction of arrival (DOA) estimation. Beamscan is a technique that forms a conventional beam and scans it over directions of interest to

Model a 77 GHz 2x4 antenna array for Frequency-Modulated Continuous-Wave (FMCW) radar applications. The presence of antennas and antenna arrays in and around vehicles has become a

Detect a signal in complex, white Gaussian noise using multiple received signal samples. A matched filter is used to take advantage of the processing gain.

Model and visualize a variety of antenna array geometries with Phased Array System Toolbox™. These geometries can also be used to model other kind of arrays, such hydrophone arrays and

Specify a phased.ReceiverPreamp System object™ with a gain of 20 dB, a noise figure of 5 dB, and a reference temperature of 290 degrees kelvin.

Compares triangle sweep FMCW and MFSK waveforms used for simultaneous range and speed estimation for multiple targets. The MFSK waveform is specifically designed for automotive radar

Model subarrays, commonly used in modern phased array systems, using Phased Array System Toolbox™ and perform analyses.

Compute the time-domain response of a simple bandpass filter:

Calculate the cascaded gain, noise figure, and 3rd order intercept (IP3) of a chain of RF stages. Each stage is represented by a frequency independent "black box", specified with it's own

Extract the S-parameters of a Device Under Test (DUT) using the deembedsparams function.

Design a broadband matching network between a resistive source and inductive load using optimization with direct search methods.

Use RF Toolbox™ to model a differential high-speed backplane channel using rational functions. This type of model is useful to signal integrity engineers, whose goal is to reliably connect

Use the RF Toolbox to determine the input and output matching networks that maximize power delivered to a 50-Ohm load and system. Designing input and output matching networks is an important

Verify the design of input and output matching networks for a Low Noise Amplifier (LNA) by plotting its gain and noise.

Use RF Toolbox™ functions to calculate the TDR (Time-Domain Reflectometry) and TDT (Time-Domain Transmission) of a differential high-speed backplane channel.

Design broadband matching networks for a low noise amplifier (LNA). In an RF receiver front end, the LNA is commonly found immediately after the antenna or after the first bandpass filter

Use Simulink® to simulate a differential high-speed backplane channel. The example first reads a Touchstone® data file that contains single-ended 4-port S-parameters for a differential

Create and use RF Toolbox™ circuit objects. In this example, you create three circuit (rfckt) objects: two transmission lines and an amplifier. You visualize the amplifier data using RF

Perform statistical analysis on a set of S-parameter data files. First, read twelve S-parameter files representing twelve similar RF filters into the MATLAB workspace and plot them. Next,

Use RF Toolbox™ to import N-port S-parameters representing high-speed backplane channels, and converts 16-port S-parameters to 4-port S-parameters to model the channels and the

Use RF Toolbox™ functions to generate a Verilog-A module that models the high-level behavior of a high-speed backplane. First, it reads the single-ended 4-port S-parameters for a

Write out the data in rfckt objects you create in the MATLAB® workspace into an industry-standard data file: Touchstone®. You can use these files in third-party tools.

Build and simulate an RC tree circuit using the RF Toolbox.

Manipulate RF data directly using rfdata objects. First, you create an rfdata.data object by reading in the S-parameters of a two-port passive network stored in the Touchstone® format data

Create an rfckt.mixer object and plot the mixer spurs of that object.

Use the 'NPoles' parameter to improve the quality of the output of rationalfit. By default, the rationalfit function uses 48 or fewer poles to find the rational function that best matches the

Use the 'Weight' parameter to improve the quality of the output of rationalfit. By default, the rationalfit function minimizes the absolute error between the data and the rational

Use the 'DelayFactor' parameter to improve the quality of the output of rationalfit.

Avoid aliasing when downsampling a signal. If a discrete-time signal's baseband spectral support is not limited to an interval of width radians, downsampling by results in aliasing.

Use downsample to obtain the phases of a signal. Downsampling a signal by M can produce M unique phases. For example, if you have a discrete-time signal, x, with x(0) x(1) x(2) x(3), ..., the M

Many measurements involve data collected asynchronously by multiple sensors. If you want to integrate the signals, you have to synchronize them. The Signal Processing Toolbox™ has

The xcorr3 function gives a map of correlation between grid cells of a 3D spatiotemporal dataset and a reference time series.

People predisposed to blood clotting are treated with warfarin, a blood thinner. The international normalized ratio (INR) measures the effect of the drug. Larger doses increase the INR and

Copyright 2016 The MathWorks, Inc.

Análise dos dados de um sistema de pêndulo de mola. Os dados foram obtidos no site:

The example shows how to perform a Strucutral Equation Model with Partial Least Squares using PLS-PM matlab toolbox by Aria M.(2015).

Assess the order of an autoregressive model using the partial autocorrelation sequence. For these processes, you can use the partial autocorrelation sequence to help with model order

Basic toolbox for polynomial B-splines on a regular grid

The filter1 function performs frequency or wavelength filtering on a 1D array using zero-phase Butterworth filtering.

The present example is similar to the one used in [5], where the dynamic response of a 100 m high clamped-free steel beam was studied. Simulated time series are used, where the first 4

The Evolutionary Power Spectral Density (EPSD) [1] is compared to the well-known spectrogram implemented in Matlab. The EPSD produces a smoother signal, especially if the amount of data

INFAUNAL: INdividual Foraminiferal Approach UNcertainty AnaLysis

In this example, we look at our efforts to characterize a device under test. We have this "black box" that we need to better understand. We might just want to know some of it's characteristics,

This function plots a power spectral density of a time series using the periodogram function.

Scatter plot array of environmental data

Use scattermatrix

Use normalqqplot in subplot array.

Use scattermatrixc

Use scatter3

Surface plot with lighting

This example was authored by the MathWorks community.

Use wavelets to analyze electrocardiogram (ECG) signals. ECG signals are frequently nonstationary meaning that their frequency content changes over time. These changes are the events of

Fourier-domain coherence is a well-established technique for measuring the linear correlation between two stationary processes as a function of frequency on a scale from 0 to 1. Because

Use the continuous wavelet transform (CWT) to analyze signals jointly in time and frequency.

The 'peppers' image is corrupted with Gaussian additive noise with and cleaned using the GFM and GLG models.

Use wavelets to denoise signals and images. Because wavelets localize features in your data to different scales, you can preserve important signal or image features while removing noise.

The 'peppers' image is corrupted with Gaussian additive noise with and cleaned using INLA.

Add an orthogonal quadrature mirror filter (QMF) pair to the Wavelet Toolbox™. While Wavelet Toolbox™ already contains many of the most widely used orthogonal QMF families, including the

The GLG model and the GFM model are both fitted to the wavelet coefficients of the 'lena' image. The fitted densities are compared to the observed distribution of coefficients

Create a signal consisting of exponentially weighted sine waves. The signal has two 25-Hz components -- one centered at 0.2 seconds and one centered at 0.5 seconds. It also has two 70-Hz

Use wavelet cross-correlation to measure similarity between two signals at different scales.

Use wavelets to detect changes in the variance of a process. Changes in variance are important because they often indicate that something fundamental has changed about the data-generating

To construct and use orthogonal and biorthogonal filter banks with the Wavelet Toolbox software. The classic critically sampled two-channel filter bank is shown in the following figure.

Use lifting to progressively change the properties of a perfect reconstruction filter bank. The following figure shows the three canonical steps in lifting: split, predict, and update.

There are a number of different variations of the wavelet transform. This example focuses on the maximal overlap discrete wavelet transform (MODWT). The MODWT is an undecimated wavelet

Create and visualize a dictionary consisting of a Haar wavelet down to level 2.

how to perform orthogonal matching pursuit on a 1-D input signal that contains a cusp.

Compare matching pursuit with a nonlinear approximation in the discrete Fourier transform basis. The data is electricity consumption data collected over a 24-hour period. The example

Obtain the nondecimated (stationary) wavelet transform of a noisy frequency-modulated signal.

Obtain the 2-D DWT of an input image.

Obtain the wavelet packet transform of a 1-D signal. The example also demonstrates that frequency ordering is different from Paley ordering.

Denoise a signal using discrete wavelet analysis.

Use wfilters, wavefun, and wpfun to obtain the filters, wavelet, or wavelet packets corresponding to a particular wavelet family. You can visualize 2-D separable wavelets with wavefun2.

Perform time-frequency analysis using the continuous wavelet transform (CWT). Continuous wavelet analysis provides a time-scale/time-frequency analysis of signals and images. The

Recover content from a HT format waveform.

Generate DMG, S1G, VHT, HT-mixed, and non-HT format waveforms. Vary configuration parameters and plot the waveforms to highlight differences in waveforms and sample rates.

Demonstrates passing WLAN S1G, VHT, HT, and non-HT format waveforms through appropriate fading channel models. When simulating a WLAN communications link, viable options for channel

Create HT configuration objects. It also shows how to change the default property settings by using dot notation or by overriding the default settings by using Name,Value pairs when

Recover contents from a VHT format waveform.

Steps through recovery of non-HT format waveform content.

Create non-HT configuration objects. It also shows how to change the default property settings by using dot notation or by overriding the default settings by using Name,Value pairs when

Recovery configuration objects are used to specify receiver algorithms and settings to use for recovery. This example shows how to create recovery configuration objects. It also shows how

Create VHT configuration objects. It also shows how to change the default property settings by using dot notation or by overriding the default settings by using Name,Value pairs when

Create S1G configuration objects. It also shows how to change the default property settings by using dot notation or by overriding the default settings by using Name,Value pairs when

Create DMG configuration objects. It also shows how to change the default property settings by using dot notation or by overriding the default settings by using Name,Value pairs when

Demonstrates the impact of changing the TGac delay profile, and it shows how fluorescent lighting affects the time response of the channel.

Perform basic VHT data recovery. It also shows how to recover VHT data when the received signal has a carrier frequency offset. Similar procedures can be used to recover data with the HT and

Build non-HT PPDUs by using the waveform generator function or by building each field individually.

How the performance of an IEEE® 802.11ac™ link can be improved by beamforming the transmission when channel state information is available at the transmitter.

Build HT PPDUs by using the waveform generator function or by building each field individually.

Create a basic WLAN link model using WLAN System Toolbox™. An 802.11ac™ [ 1 ] VHT packet is created, passed through a TGac channel. The received signal is equalized and decoded in order to

Generate a multi-user VHT waveform from individual components. It also shows how to generate the same waveform by using the wlanWaveformGenerator function. The data fields from the two

Build VHT PPDUs by using the waveform generator function or by building each field individually.

Build S1G PPDUs by using the waveform generator function.

The transmit and receive processing for a 802.11ac™ multi-user downlink transmission over a fading channel. The example uses linear precoding techniques based on a

Build DMG PPDUs by using the waveform generator function.

Measure the packet error rate of an IEEE® 802.11ac™ VHT link using an end-to-end simulation with a fading TGac channel model and additive white Gaussian noise.

Choose your country to get translated content where available and see local events and offers. Based on your location, we recommend that you select: .

You can also select a location from the following list:

See all countries