
1

Real-Time Simulation of Physical Systems
Using Simscape

Steve Miller, Jeff Wendlandt

1. Abstract

Real-time simulation of multidomain physical system models (mechanical, electrical,
hydraulic, etc.) requires finding a combination of model complexity, solver choice,
solver settings, and real-time target that permit execution in real time. A better
understanding of the tradeoffs involved in each of these areas makes it easier to
achieve this goal and use Model-Based Design to reap the benefits of using virtual
systems prior to building hardware prototypes. This paper outlines the steps in
moving from desktop to real-time simulation, and illustrates this process using
models built using MathWorks products Simscape, SimElectronics, and
SimHydraulics. The steps described in this paper apply to real-time simulation
regardless of which real-time hardware is used. This process was used on 20
models containing both linear and nonlinear elements in the hydraulic, electrical,
mechanical, pneumatic, and thermal domains to prepare them for real-time
simulation.

2. Introduction

Replacing physical devices, like vehicles, robots, or planes, with virtual devices can
drastically reduce the cost of testing control systems, software, and hardware. It can
also improve the quality of the final product by enabling more complete testing of the
entire system. It is often necessary to run the computer simulation representing the
virtual system in real time. This means that the inputs and outputs in the virtual world
of simulation must be read or updated synchronously with the real world. When the
simulation time reaches five, fifty, or five hundred seconds the exact same amount of
time has passed in the real world.

Configuring a model and the numerical integrator to simulate in this manner can be
difficult. The simulation execution time per step must be consistent, and sufficiently
shorter than the time step of the simulation to permit any other tasks that the
simulation environment must perform, such as reading sensor inputs or outputting
transducer signals. This is a challenging prospect, for the conditions vary during
simulation. Switches open, valves close, and these occasional events can require
more computations to achieve an accurate result. To be successful, the solver
settings, simulation step size, and the level of model fidelity must be adjusted to find
a combination that permits real-time simulation while delivering accurate results.

Advances in solver technology have made it easier to configure simulations to
simulate in this fashion. Features added to simulation tools, such as fixed-cost
algorithms and local solvers added to Simscape from MathWorks, make it possible
to simulate even complex models like hydraulic pipelines in real time. As an
example, after applying the process covered in this paper to the SimHydraulics®
demonstration model sh_segmented_pipeline_test_rig (Figure 1), accurate results
were achieved when running the model in real time using xPC Target™2 from

2

MathWorks on an Intel Core 2 Duo E6700 (2.66GHz) with a simulation step size of
1ms (Figure 2).

Figure 1: SimHydraulics demonstration model
of water hammer in a pipeline.

 Figure 2: Desktop and real-time simulation
results. The results are nearly identical.

This is a particularly challenging model numerically for it includes the water hammer
effect, which takes place when a variable orifice is abruptly shut off with full flow rate
flowing through the pipe. Even with the restrictions imposed by executing on a real-
time target, the simulation results capture the oscillations in the hydraulic circuit.
This paper outlines the steps in moving from desktop to real-time simulation used on
this and 19 other models in different physical domains built with MathWorks physical
modeling products. The steps described in this paper apply to real-time simulation
regardless of which real-time hardware is used.

3. Benefits of Real-Time Simulation

Real-time simulation is used in a number of steps in the development process and in
some cases in the final product. In Model-Based Design, the plant model is used to
develop and test the control and signal processing algorithms in desktop simulation.
Once the designs are complete and the algorithms exist in production code, it is
necessary to test that code as well as the production controller. Instead of
connecting it directly to a hardware prototype, the plant model used in the design
phase can be used to test the production code and processor if it is capable of
running in real time. This is referred to as hardware-in-the-loop testing and offers
many benefits, including:

1. Ability to test conditions that would damage equipment or personnel
2. Ability to test systems where no prototypes exist
3. Reduced costs in the later phases of development
4. Ability to test 24 hours a day, 7 days a week

In addition to the development process, real-time simulation is also used in the final
product. Products that have a human in the simulation loop require real-time
simulation. For example, flight simulators that are used to train pilots require real-

3

time simulation of the plane, control system, weather conditions, and other aspects
of their environment.

4. Challenges of Real-Time Simulation

For a simulation to execute in real time, the amount of time spent calculating the
solution for a given time step must be less than the length of that time step. This
requires that the execution time per simulation time step be bounded. Variable-step
solvers, which are often used in desktop simulation, take smaller steps to accurately
capture events that occur during the simulation. Varying the step size is not an
option for real-time simulation, so a fixed-step solver (implicit or explicit) must be
used. This can make real-time simulation more challenging than desktop simulation.
The model and fixed-step solvers must be configured so that system dynamics can
be accurately captured without changing the step size.

A fixed-step solver must be chosen that provides accurate results at a step size large
enough to permit real-time simulation. Most fixed-step solvers will produce the same
simulation results as a variable-step solver if a small enough step size is chosen.
However, different fixed-step solver algorithms (implicit, explicit, lower/higher order,
etc.) will require different step sizes to produce accurate results. They also require
different amounts of computational effort per time step.

Once a solver is chosen, determining an appropriate step size is the next challenge.
Increasing the time step to permit more time to calculate the result can lead to
inaccurate results. Shrinking the time step to improve the accuracy of the simulation
results may make it impossible to execute in real time. Trial and error may be
required to find the combination of settings that permit real-time simulation while
producing accurate simulation results.

If this combination of settings cannot be found, it may be that the model contains
effects that a fixed-step solver cannot handle at a step size that permits real-time
simulation. These effects can be events in the simulation (hard stops, stick-slip
friction, switches that open and close, etc.) or portions of the system that have a very
small time constant (small masses attached to stiff springs, current or pressure
oscillations, etc.). Identifying and modifying these elements is then required before
searching for the combination of solver settings and step size that will permit real-
time simulation.

5. Moving From Desktop to Real-Time Simulation

To move from desktop simulation to real-time simulation on the chosen real-time
hardware, the following items must be adjusted until the simulation can execute in
real time and deliver results sufficiently close to the results obtained from desktop
simulation:

1. Solver choice
2. Number of solver iterations
3. Step size
4. Model size and fidelity

4

The procedure depicted in the flowchart in Figure 3 has been applied to 20 models
containing hydraulic, electrical, mechanical, pneumatic, and thermal components
that include a range of linear and nonlinear elements. In each case, real-time
execution was achieved with very accurate results.

 Figure 3: Flowchart depicting the process that helps engineers move from

desktop simulation to real-time simulation.

Step 1: Obtain a converged set of results with a variable-step solver.

To ensure that the results obtained with the fixed-step solver are accurate, a set of
reference results are needed. These can be obtained by simulating the system with
a variable-step solver and ensuring that the results are converged by tightening the
error tolerances until the simulation results do not change. For Simscape models,
the recommended variable-step solvers are ode15s and ode23t.

5

Step 2: Examine the step sizes during the simulation to determine if the model is
likely to run with a large enough step size to permit real-time simulation.

A variable-step solver will vary the step size to stay within the error tolerances and to
react to zero crossing events3. If the solver abruptly reduces the step size to a small
value (e.g. 1e-15s), this indicates that the solver is trying to accurately identify a zero
crossing event. A fixed-step solver may have trouble capturing these events at a
step size large enough to permit real-time simulation.

The following MATLAB® commands can be used to generate a plot that shows how
the time step varies during the simulation:

semilogy(tout(1:end-1),diff(tout),'-*');

title('Step Size vs. Simulation

Time','FontSize',14,'FontWeight','bold');

xlabel('Simulation Time (s)','FontSize',12);

ylabel('Step Size (s)','FontSize',12);

The plots in Figure 4 and Figure 5 and are produced from a SimHydraulics model
and illustrate the concepts explained above.

Figure 4: Plot of step size during variable-step
simulation. Abrupt drops in step size indicate
zero-crossing events. The amount of zero-
crossing events and how easily the simulation
recovers give a rough indication of how difficult
it will be for a fixed-step solver to produce
accurate results at the largest step size the
variable-step solver uses.

Figure 5: Plot of a smaller range of the step
size during simulation. (1) indicates the step
size that will meet the error tolerances for most
of the simulation. (2) are examples of zero-
crossing events where the solver recovered
instantly, and may not be difficult for the fixed-
step solver. (3) are examples of a zero-crossing
events where the variable-step solver took
longer to recover and will likely require a
smaller step size for the fixed-step solver to
deliver results with acceptable accuracy.

This analysis should provide a rough idea of a step size that can be used to run the
simulation. Determining what effects are causing these events and modifying or
eliminating them will make it easier to run the system with a fixed-step solver at a
larger step size and produce results comparable to the variable-step simulation.

6

Step 3: Simulate the system with a fixed-step, fixed-cost solver and compare the
results to the reference set of results obtained from the variable-step simulation.

As explained in section 4, a fixed-step solver (implicit or explicit) must be used to run
the simulation in real time. The chosen solver must provide robust performance and
deliver accurate results at a step size large enough to permit real-time simulation.
solver should be chosen to minimize the amount of computation required per time
step while providing robust performance at the largest step size possible. To decide
which type of fixed-step solver to use, it is necessary to determine if the model
describes a stiff or a non-stiff problem. The problem is stiff if the solution the solver
is seeking varies slowly, but there are other solutions within the error tolerances that
vary rapidly4.

Comparing the simulation results generated by a fixed-step implicit solver and a
fixed-step explicit solver for the same model shows a difference in accuracy that is
dependent upon step size (Figure 6) and model stiffness (Figure 7).

Figure 6: Plot showing simulation results for the
same model simulated with a variable-step solver,
fixed-step implicit solver, and fixed-step explicit
solver. The explicit solver requires a smaller time
step to achieve accuracy comparable to the implicit
solver.

Figure 7: Plot showing simulation results for
the same model simulated with a variable-step
solver, fixed-step implicit solver, and fixed-step
explicit solver. The oscillations in the fixed-
step explicit solver simulation results suggestd
this is a stiff problem.

Explicit and implicit solvers use different numerical methods to solve the system of
equations. An explicit algorithm samples the local gradient to find a solution,
whereas an implicit algorithm uses matrix operations to solve a system of
simultaneous equations that helps predict the evolution of the solution4. As a result,
an implicit algorithm does more work per simulation step, but can take larger steps.
For stiff systems, implicit solvers should be used.

Both accuracy and computational effort must be taken into account when choosing a
fixed-step solver. Simulating physical systems often involves multiple iterations per
time step to converge on a solution. For a real-time simulation, the amount of
computational effort per time step must be bounded. In order to have a bounded
amount of execution time per simulation time step, it is necessary to limit the number
of iterations per time step. This is known as a fixed-cost simulation. Fixed-cost
simulation is used to prevent overruns, which occur when the execution time is

7

longer than the sample time. Figure 8 shows how an overrun can occur if the number
of iterations is not limited.

Figure 8: A fixed-step solver keeps the time step constant.
Limiting any needed iterations per time step is necessary for
fixed-cost simulation.

Figure 9: In Simscape, the Solver
Configuration block permits you to
limit the iterations per time step.

Iterations are necessary with implicit solvers. The iterations are handled
automatically with variable-step solvers, but for the implicit fixed-step solver ode14x
in Simulink®, the number of iterations per time step must be set. This is controlled by
the parameter “Number Newton’s iterations” in the Solver pane of the Configuration
Parameters dialog box in Simulink.

Iterations are also often necessary for each Simscape physical network for both
explicit and implicit solvers. The iterations in Simscape are limited by setting the
checkbox, “Use fixed-cost runtime consistency iterations” and entering the number of
nonlinear iterations in the Solver Configuration block (see Figure 9). If the local
solver option is used, it is recommended to initially set the number of nonlinear
iterations to 2 or 3.

The amount of computational effort required by a solver varies with respect to a
number of factors, including model complexity. To provide an indication of the
relative cost for the fixed-step solvers available, a nonlinear model of a pneumatic
actuation system containing a single Simscape physical network was simulated with
each of the fixed-step solvers. These simulations were conducted at the same step
size with similar settings for the total number of solver iterations. Figure 10 shows
the normalized execution time.

8

 BE = Backward Euler, Trap = Trapezoidal Rule

 Figure 10: Plot of the normalized cost of all fixed-step solvers that can be used on

Simscape models. The results were obtained by simulating a nonlinear model
containing a single Simscape physical network with each solver at the same step
size and similar settings for the total number of solver iterations.

From this plot, it is clear that for this example most explicit fixed-step solvers require
less computational effort than the implicit fixed-step solver ode14x. Though an
explicit solver may require less computational effort, for stiff problems an implicit
solver is necessary for accurate results. For this example, the two local Simscape
solvers (Backward Euler and Trapezoidal Rule) required the least computational
effort. In most cases they provide the best combination of speed and accuracy.

A powerful option available in Simscape is to use a local solver on physical
networks. By using this option, it is possible to use a implicit fixed-step solver only
on the stiff portions of the model and an explicit fixed-step solver on the remainder of
the model (Figure 11). This minimizes the computations done per time step, making
it more likely the model will run in real time.

Figure 11: Using local solvers permits configuring implicit
solvers on the stiff portions of the model and explicit
solvers on the remainder of the model, minimizing
execution time while maintaining accuracy.

 Figure 12: In Simscape, the Solver
Configuration block permits you to
configure local solvers on Simscape
physical networks.

9

For Simscape models, the Backward Euler and Trapezoidal Rule should always be
tested and will most likely provide the best performance and the most flexibility, for
they can be configured per physical network. Figure 12 shows how to enable the
local solver and the settings associated with it. The Backward Euler solver is
designed to be robust and tends to damp out oscillations. The Trapezoidal Rule
solver is designed to be more accurate and preserve oscillations.

To summarize recommendations for setting up fixed-cost simulations:

1. If the system is non-stiff and is described by ordinary differential equations
(ODEs), an explicit solver is usually the best choice.

2. If the system is stiff, an implicit solver (ode14x, Backward Euler, or
Trapezoidal Rule) should be used and the number of iterations must be
limited.

3. For Simscape models:
1. Performing a fixed-cost simulation requires setting the number of

iterations to prevent overruns. This is done by selecting the “Use
fixed-cost runtime consistency iterations” setting in the Solver
Configuration block attached to the Simscape physical network.

2. The local solvers in Simscape should always be tested. Using a
local solver is often the best choice for fixed-cost simulations.

3. When performing fixed-cost simulation using the local solvers in
Simscape, it is recommended to initially set the number of nonlinear
iterations to 2 or 3.

4. If you are using ode14x on a model with a Simscape physical
network, to perform a fixed-cost simulation it is necessary to enable
fixed cost and set the number of nonlinear iterations in the Solver
Configuration block.

Step 4: Find the combination of step size and number of nonlinear iterations where
the step size is small enough to produce results that are sufficiently close to the set
of reference results obtained from variable-step simulation and large enough so that
there is enough safety margin to prevent an overrun.

During each time step, the real-time system must calculate the simulation results for
the next time step (simulation execution) and read the inputs and write the outputs
(processing I/O and other tasks). If this takes less than the specified time step, the
processor remains idle during the remainder of the step. These quantities are
illustrated in Figure 13.

10

 Figure 13: Tradeoff involving solver choice, number of nonlinear
iterations, and step size. For a given model, these must be chosen to
deliver maximum accuracy and robustness with enough idle time to
provide a sufficient safety margin.

The challenge is to find appropriate settings that provide accurate results while
permitting real-time simulation. In each case, it is a tradeoff of accuracy versus
speed. Choosing a computationally intensive solver, increasing the number of
nonlinear iterations, or reducing the step size both increases the accuracy and
reduces the amount of idle time, raising the risk that the simulation will not run in real
time. Adjusting these settings in the opposite direction will increase the amount of
idle time but reduce accuracy.

It is necessary to leave sufficient safety margin to avoid an overrun when simulating
in real time. If the amount of time spent processing inputs, outputs, and other tasks
as well as the desired percentage of idle time are known, the amount of time
available for simulation execution can be calculated as follows:

Estimating the budget for the execution time helps ensure a feasible combination of
settings is chosen.

The speed of simulation on the desktop can be used to estimate the execution time
on the real-time target. There are many factors that affect the execution time on the
real-time target, so simply comparing processor speed may not be sufficient. A
better method is to measure the execution time during desktop simulation and then
to determine the average execution time per time step on the real-time target for a
given model. Knowing how these values relate for one model makes it possible to
estimate execution time on the real-time target from the execution time during
desktop simulation when testing other models.

11

Step 5: Using the selected solver, number of nonlinear iterations, and step size,
simulate on the real-time platform and determine if the simulation can run in real
time.

Step 6: If the simulation does not run in real time on the selected real-time platform,
it will be necessary to determine the cause and choose an appropriate solution.

If the simulation does not run in real time on the real-time platform, it may be due to
the fact that the model is not real-time capable. The combination of effects captured
in the model and the speed of the real-time platform may make it impossible to find
solver settings that will permit it to run in real time (Figure 14).

 Figure 14: Diagram showing when a simulation is not real-time capable.
The minimum possible step size permitting real-time execution is larger
than the maximum possible step size that permits acceptable accuracy
and robustness.

If the simulation is not real-time capable, there are some options that can be
explored:

1. Use a faster real-time computer.
2. Determine new settings that reduce the execution time (for example,

reducing the number of nonlinear iterations) or permit a larger step size.
3. Eliminate effects that require significant computational effort or that require

a small time step to accurately capture them.
4. If possible, configure the model and the real-time system to evaluate the

physical networks in parallel. This can be done if for a given time step the
networks are not dependent upon one another. Experience with the
generated code and the real-time target is required to use this option.

12

6. Adjusting Models To Make Them Real-Time Capable

In the event that no settings can be found that permit the simulation to run in real
time on the available real-time computer while delivering accurate results, it is
necessary to modify or remove effects from the model that prevent real-time
simulation. Here are two categories and some examples.

1. Elements that create events
In this case, an event occurs so that the solution changes nearly
instantaneously. The rapid change can be difficult for a fixed-step solver
to step over and find the right solution on the other side of the event. If it
fails to find the solution, the solver may go unstable. Examples of
elements that create these kinds of events include:

1. Hard stops, backlash
2. Stick-slip friction
3. Switches or clutches

2. Elements with a small time constant

In this case, an element or a group of elements has a very small time
constant. These elements cause fast dynamics that require a small step
size so that a fixed-step solver can accurately capture the dynamics.
Examples of systems that have a small time constant include:

1. Small masses attached to stiff springs with minimal damping
2. Electrical circuits with small time constants
3. Hydraulic circuits with small compressible volumes

If a scripting environment is available that has commands permitting interrogation of
the model, such as MATLAB, identifying these components and parameters can be
done very quickly which narrows the search for the effects that need to be modified.
There are methods of automating these searches using tools like the Simulink Model
Advisor which makes it easier to apply these searches to other models.

Examining the eigenmodes of the system can indicate which states have the highest
frequency, and mapping those states to the individual components may point to the
source of the problem. Since this can only be done at an individual operating point,
identifying that point by looking for small step sizes during a variable-step simulation
will make this more effective.

Once the effects have been identified, the next step is to modify or eliminate them.
Methods that can be used to modify these effects include:

1. Replacing nonlinear component models with linearized versions of those
models

2. Using lookup tables to simplify complex equations
3. Producing a simplified model by using system identification theory on the

input and output data
4. Smoothing discontinuous functions (step changes) by using filters and

other techniques.

13

Once the model is modified, the process described in section 5 can be applied to
identify the appropriate solver configuration and settings to enable real-time
simulation.

7. Examples and Results

The procedure described in this paper has been applied to 20 physical models built
using Simscape, SimHydraulics, and SimElectronics®, and all 20 of them are able to
run in real time. These models contain hydraulic, electrical, mechanical, pneumatic,
and thermal elements, and include applications such as hydromechanical
servovalves, brushless DC motors, hydraulic pipelines with water hammer effects,
and pneumatic actuation systems with stick-slip friction. Eighteen of the models are
nonlinear. As an indication of the size of the models, after equation reduction the
smallest model had 4 states and the largest model had 117 states. The original
number of states before equation reduction is typically much larger.

All simulations were performed on an Intel Core 2 Duo E6700 (2.66GHz) that was
running xPC Target from MathWorks. With each model, settings were found that
permitted real-time simulation on the target and delivered accurate results with more
than enough idle time to ensure robust simulation. The maximum percent of a step
spent in simulation execution was less than 18%, meaning that there was plenty of
safety margin for processing I/O and other tasks. The average percentage spent in
simulation execution was 3.9% and the minimum was 6e-4%.

8. Conclusions

This paper covered the background of real-time simulation, and described the steps
in moving from desktop to real-time simulation. By illustrating this process using
models built using Simscape from MathWorks and solver technology used in
MathWorks products focused on real-time simulation, users of these tools should be
able to apply this process to their models. The benefits of real-time simulation are
significant, including reduced development costs and higher quality products. As a
core element of Model-Based Design, it will continue to play an important role in
product development processes.

9. References

1 Simscape User’s Guide, MathWorks, Natick, MA September 2009
2 xPC User’s Guide, MathWorks, Natick, MA September 2009
3 Simulink User’s Guide, MathWorks, Natick, MA September 2009

http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/ug/f7-
8243.html#f7-9506

4 C. Moler, “Stiff Differential Equations,” MATLAB News and Notes, May, 2003

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See www.mathworks.com/trademarks for a
list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their
respective holders.

http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/ug/f7-8243.html#f7-9506
http://www.mathworks.com/access/helpdesk/help/toolbox/simulink/ug/f7-8243.html#f7-9506

