MATLAB EXPO 2017

How to build an autonomous anything

Mary Ann Freeman
Director of Engineering,
MATLAB Products, Deep Learning, Data Analytics
MathWorks

Autonomous

Acting independently

Provides the ability of a system to act independently of direct human control

Provides the ability of a system to act independently of direct human control under unrehearsed conditions

Autonomous Technology – Balancing Responsibility

Bazille's Studio
Bazille 1870

Shuffleton's Barbershop Rockwell 1950

Autonomous Artistic Style Classification Rutgers University

Image Feature Extraction

Machine Learning Classification

Style
Classifier
(SVM)

Style:
Regionalism

Genre
Classifier
(SVM)

Genre:
Interior

Artist
Classifier
(SVM)

Artist:
Rockwell

Where to add autonomy with perception?

- Analyze more data
- Reduce bias
- Improve measurement quality
- Save time
- Improve performance

Virtual Semiconductor Manufacturing Calibration

Cost of rig: \$1,000,000+ Repair cost: \$100,000

Cost of valve: \$200

Autonomous Service for Predictive Maintenance

Which sensor values should they use?

Autonomous Service for Predictive Maintenance

Autonomous Service for Predictive Maintenance

Machine Learning or Deep Learning?

Machine Learning Approach

Deep Learning Approach

Feature Extraction & Classification

Output

Machine Learning and Deep Learning

Regression Learner app

- Configure and train models using object detection algorithms (R-CNN, Fast R-CNN, Faster R-CNN)
- Leverage pretrained models for transfer learning (AlexNet, VGG-16, VGG-19)
- Import models from Caffe
- Train networks using multiple GPUs

R2017b Mega Release of Deep Learning Capabilities

Design Deep Learning & Vision Algorithm

Deep learning design is easy in MATLAB

Apps for Ground Truth Labeling,
Pixel Labeling
Pre-trained model importer
Training Visualization

Parallel Computing Toolbox

Train

4x faster than TensorFlow
 (on TitanXP)

GPU Coder

7x faster than TensorFlow
5x faster than pyCaffe
(on TitanXP)
2x faster than C++ Caffe
(on Jetson)

R2017b Mega Release of Deep Learning Capabilities

Design Deep Learning & Vision Algorithm

Find out more:

Deep Learning: Transforming Engineering and Science

Avinash Nehemiah, MathWorks Amit Goel, NVIDIA

High Performance Embedded Implementation

Deep learning design is easy in MATLAB

Apps for Ground Truth Labeling,
Pixel Labeling
Pre-trained model importer
Training Visualization

Parallel Computing Toolbox

Train

4x faster than TensorFlow (on TitanXP)

GPU Coder

7x faster than TensorFlow5x faster than pyCaffe (on TitanXP)2x faster than C++ Caffe (on Jetson)

What are the best predictors?

- Data-driven
- Model-driven

Autonomous Glucose Level Management

Autonomous Glucose Level Management Bigfoot Biomedical

Autonomous Glucose Level Management Bigfoot Biomedical

Autonomous Glucose Level Management

Bigfoot Biomedical

Autonomous Glucose Level Management Bigfoot Biomedical

Virtual Clinic Generating data through simulation

Virtual Clinic Scaling computations to simulate 50 million patients a day

Where will you get your data?

- Simulation
- Public repositories
- In the field
- In the lab
- Internet of Things (IoT)

Working with Big Data Just Got Easier

Stream large input signals from MAT-files

Computer vision and controls algorithms

Embedded Platform MPC5121e

- User Input
- Visualization

Vehicle Display Controller

- Driver Input
- Visualization

controls algorithms

How will you put it into production?

- Embedded Systems
- IT Systems
- Cloud
- Desktop Apps

Investments in Model-Based Design

Efficient code generation

Floating-point HDL code generation

Investments in Model-Based Design

Floating-point HDL code generation Efficient code generatiq R2016b g-point Find out more: rithm **Better Than Hand: Generating Highly Optimized Code Using** Simulink and Embedded Coder Coder Mark Danielsen, MathWorks Target-Aware Mapping Clones replaced with library block Vendor-Independent Altera / Xilinx Altera ASIC/FPGA Soft IP Hard IP RTL

Investments in Model-Based Design

of CERT C standard


```
if (output v7 >= 0) {
    saved_values output_v7] = s8_ret;
    return s8_ret
    Assignment to element of static array (int 16): [-32 .. 112]
}

return reset temp array index value: [0 .. 555]
```

CERT C	Description	Polyspace Code Prover
ARR30-C	Do not form or use out-of-bounds pointers or array subscripts	Array access out of bounds

Detect and fix standards compliance issues at design time

Capabilities of an Autonomous System

How to build an autonomous anything

Focus on Perception	Look for autonomy in creative placesDo more than manually possible
Use the Best Predictors	Data-drivenModel-driven
Get the Right Data	 Reduce to actionable data Take advantage of Big Data Use simulation to supplement available data
Flow to Production	 Address the architecture Leverage Model-Based Design for embedded Automate integration with enterprise IT systems

What is *your* autonomous anything?