MathWorks AUTOMOTIVE CONFERENCE 2023 Europe

Making the Most of FPGAs for Automotive Power Electronics and Control Design

Dimitri Hamidi

Power Electronics Key Role in Electrification

Motor Control

On-Board Charger

Great power electronics control design results in an elegant marriage of hardware and embedded software

But like any marriage, it comes with challenges:

- Sizing and specifying electrical components, motor, battery ...
- Developing control algorithms and tuning controller gains for varying operating conditions and component degradation
- Developing software for a complete range of supervisory and fault mitigation conditions
- Hardware-software integration, mistakes first found during this stage are the hardest to troubleshoot and most expensive to fix

Benefits of Model-Based Design for Power Electronics Control

- Understand HW-SW system behavior early in the project
- Handle system complexity and design changes
- Reduce the time for design cycles
- Generate code for practically any hardware platform
- Verify control algorithms using desktop and real-time simulations

MathWorks AUTOMOTIVE CONFERENCE 2023

Model-Based Design – Verify with Real-Time Simulation UC1

- Generate C or HDL code for Rapid Control Prototyping (RCP)
- Generate C or HDL code for Hardware-in-the-Loop (HIL) testing
- Test design changes using the same systematic verification methods

Why FPGAs? Real-Time Simulation for Power Electronics and Motor

 GaN and SiC device simulation requires time steps that go beyond what is achievable on CPUs.

Power electronics system for HIL simulation

CPU HIL works well for simulation time steps up to 25us FPGA HIL can run at simulation time steps of 1us

Simscape Electrical model

State-space description and solver in Simulink

FPGA

Nonlinear Simulations on FPGA Supported from R2021a

R2021a

Nonlinear PMSM FPGA for HiL Example

		FireFly™ cable with 4x MGT							
承 S	Scope					– 0 ×			
File	Tools View Simulation Help								
0	• 🚳 🕕 🕨 🖲 😓 • 🕰 • 👰 •								
Demanded and achieved torques									
30									
25						trq:2			
20									
15									
10									
10									
5									
-									
->[
			Demanded and	achieved speeds			1 in		
500						spd:1	<i>j</i> -111		
400						spd:2			
400									
300									
200									
400									
100									
0									
			Gate di	emands					
_ '									
0.8						g;3 g;4	h.rpt.		
0.6							<u>inpr</u> .		
0.4									
0.4									
0.2									
0							4		
			Curi	rents					
100						iabc:1			
100						iabc:2 iabc:3			
50									
0									
-50									
							O		

Deploy Neural Network Regression Model to FPGA Platforms

Model-Based Design – Generate Production-Ready Code – UC2

- Generate C or HDL code for microcontrollers, FPGAs, and ASICs
- Verify HDL code with cosimulation and FPGA-in-the-Loop
- Verify C Code with Software-in-the-Loop (SIL) and Processor-in-the-Loop (PIL) testing

Why FPGAs? Real-Time Performance for Control Algorithms!

Deployment on FPGAs & ASIC Design

Accelerate Your Motor Control Development for Electric Vehicles

- Simulink blocks for creating and tuning field-oriented control, field-weakening control, and other algorithms for BLDC and PMSM
- Verify control algorithms in closed-loop simulation using motor and inverter models
- Parameter estimation tool for accurate estimation of stator resistance back EMF, inertia, and friction
- generate C and HDL code for production

Sensor Decoders

G

Н

Controls

Sensorless Estimators

Protection and Diagnostics

Signal Management

Motor Control Blockset

R2020a

Math Transforms

Motor Control Blockset HDL Support

Motor Models

Control Reference

Generate Production Quality HDL Code

Clarke Transform

Converts balanced three-phase quantities into balanced two-phase quantities. The A and B phases are converted to the direct axis (alpha) component and the quadrature axis (beta) component. The alpha and beta components are still dependent on time and speed.

- Portable VHDL or Verilog
- Bit and cycle accurate
- Readable, customizable,
- structured, commented
- Retains model hierarchy
- ports and signal naming
- Bidirectional traceability

Verify RTL Automatically Using the Methodology of Choice

Where are you on the Model-Based Design Adoption Grid?

Model Usage

	Modeling and Simulation	Real-Time Simulation and Testing	Production Code Development	
Systematic Testing of Algorithms	System Verification	Automated Real-Time Testing	Certification	
Simulating Algorithms with System Models	System Simulation	Hardware-in-the-Loop (HIL) Simulation	SIL, PIL, CoSim, FIL	
Developing Algorithms	Algorithm Modeling	Rapid Prototyping	Embedded Code Generation	
-				

Code Generation

18 **18**

HDL Coder Integrated Workflows with 3rd Party Hardware

National Instruments

=	📣 MathWorks®					
File Excha	inge	•	Search File Exchange		File Exchange 🖌 Q	
ŀ	HDL Coder Support Package for NI FPGA Hardware Version 23.3.0.0 (1.75 MB) by NI Team HIL Generates biffiles for NI FPGA hardware https://github.com/ni/hdlcoder-support-package-for-nifpga- bardware			★★★★★ (8) 140 Downloads Updated 18 Apr 2023 From GitHut View License on GitHut		
				+ Follow	Download -	

Any FPGA

dSPACE

FPGA Programming Blockset• Support of The MathWorks© HDL Coder™ *2023-ASubsystems in Xilinx® FPGA Modelshttps://www.dspace.com/de/gmb/home/products/releases/dspace-release-2023-a.cfm

Summary

- FPGAs are playing a key role in power electronics control design
- Model-Based Design is the leading methodology in this domain
- It enables real-time simulation of power electronics on FPGAs
- Deployment of complex control algorithms on FPGAs
- Facilitates the transition to other targets such as ASIC or MCUs
- Integrated workflows for hardware platforms and HiLs

Dimitri Hamidi dhamidi@mathworks.com

MathWorks AUTOMOTIVE CONFERENCE 2023 Europe

Thank you

© 2023 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See *mathworks.com/trademarks* for a list of additional trademarks. Other product or brand names may be trademarks or registered trademarks of their respective holders.