MathWorks AUTOMOTIVE CONFERENCE 2023 Europe

Accelerating Development of Clean, Safe, Automated Software-Defined Vehicles

Andy Grace, MathWorks

Electrification

Connectivity

Autonomous

Electrification

Connectivity

Autonomous

Workflow Trends

Systems Engineering

Modern Software Practices

Al and Data-Driven Development

Historical perspective: First MathWorks Automotive Advisory

Germany, 1998

25 Years of MAB

Problem statement from initial MAB Meetings

25 Years of MAB

Vision emanating from initial MAB Meetings

Model-Based Design

Survey: Which areas is your organization deriving the most value from Model-Based Design? (pick up to three)

How should Model-Based Design adapt?

New MBD Approaches

How to measure software operational performance?

Metric	DescriptionThe time it takes from code commit to code successfully running in production.				
Lead Time for Changes					
Deployment Frequency	The frequency at which code is deployed to production.				
Change Failure Rate	The percentage of deployments causing a failure in production.				
Mean Time to Recover (MTTR)	The time it takes to recover from a failure in production.				

How to measure software operational performance?

Lead Time for Changes The time it takes from code commit to code successfully running in Deployment Frequency The frequency at which code is deployed to production. Change Failure Rate The percentage of deployments production	Metric	Role of Mod	lel-Based Design?				
Throughput Deployment Frequency The frequency at which code is deployed to production. Change Failure Rate The percentage of deployments production	Lead Time	for Changes	The time it takes from code commit to code successfully running in				
Deployment Frequency deployed to production. Change Failure Rate The percentage of deployments		Thr	oughput				
Change Failure Rate	Deployment Frequency		deployed to production.				
	Change Failure Rate Mean Time to Recover (MTTR)		The percentage of deployments				
			failure in production.				

Model-Based Design Workflow

Model-Based Design Workflow

Full automation?

Model-Based Design: Integration and Automation

SIMULATION	DEBUG	MODEL	ING	FORMAT		APPS	
Get Add-Ons -	Requirements Manager	Process Advisor		Model Advisor	CI Det	one tector	Metrics Dashboard
Process Advisor:	: Flight_Control			(€×		
Model 👻	= 🛛			🕞 Run All	-	۲	Flight_Control >
Tasks			Out	Details		Ð	
Gener	ate Simulink Web View		2	√1		5.3	PilotPitchCmd
Check	Modeling Standards		2	√3 △1		K N	r nou nononiu
Ø Detect	Design Errors		2	√1		=	$(5) \rightarrow d$
Gener	ate SDD Report		2	√1		AI	PilotRollCmd
Gener	ate Code (Top)		1	√1		0.0	Filoti Con Office

Cl support package R2022a

Detailed Testing Workflow

Model-Based Design: Integration and Automation

Simulink as a simulation integration platform

Simulink Scales to Complex Systems

You successfully target a range of devices with code generation

CPU

GPU

MathWorks®

4700 organizations use automatic code generation

Each release we get more out of your hardware

Each release we get more out of your hardware

Multicore Cache Accelerators SIMD

Parallelization

Neighborhood Processing Subsystem in Simulink R2022b

Improved SIMD for ARM, Intel and AMD R2023a

Hardware Aware

Xilinx Versal R2022

Infineon AURIX TC4x R2022b

GPU Performance Analyzer R2023a

MAB Survey: Which Real-Time Operating System (RTOS) is likely to be in your <u>next generation</u> of systems? (select all that apply)

* MathWorks Advisory Board cross- industry survey

MAB Survey: Which standards-based architecture and middleware does your organization plan on using? (select all that apply)

You have been successful deploying models as individual components and complete applications

We continue investing in architecture standards and middleware

Platform Aware Code Generation

Use System Composer to model middleware more completely

Platform Aware

Code Generation

System Composer

New MBD Approaches

Access Scaling Collaboration

Access

Scaling

Collaboration

Simulink Online

Cloud solutions scaling

One million simulations finished in 2.5 minutes! Over 1 day if ran serially

Access Scaling

Collaboration

Project dashboard

Design review

Instant search

Electrification

Connectivity

Autonomous

31% EVs by 2030 – According to OEM Announcements

EV announcements made for about 55% of the total automotive market.

 \bullet

Electric Vehicles

Electric motors

Battery packs

Full vehicle models

Green Energy

Solar

Wind

Hydroelectric

Green Hydrogen

Deep Solutions

Electrification

Autonomous

Connectivity

Wireless, RF, and Mixed Signal Product Portfolio

Deep Solutions

Electrification

Connectivity

MathWorks®

Model-Based Design Workflow

Model-Based Design Workflow

Autonomous

Autonomous Product Portfolio

Electrification

Connectivity

Autonomous

Workflow Trends

Systems Engineering

Modern Software Practices

Al Reference Examples

Predictive Maintenance

Lidar Processing

Visual Inspection

Hyperspectral

Radar Processing

Reinforcement Learning

Signal Processing

Wireless

Communications

Audio

Automated Driving

Medical Imaging

Al Reference Examples

Predictive Maintenance

Lidar Processing

Visual Inspection

Hyperspectral

Radar Processing

Reinforcement Learning

Signal Processing

Wireless

Communications

Audio

Robotic Control

Automated Driving

Medical Imaging

Applying AI to Real-World Sensor Data (Virtual Scenario Generation)

Scenario Builder Add-on for Automated Driving Toolbox

Recorded sensor data

Deep3dbox, CLRNet PVRCNN, RandLANet, K-lane

Reconstructed RoadRunner Scenario

~10x faster than a human in creating scenarios from data

Electrification

Connectivity

Autonomous

Model-Based Design Workflow

